sklearnΒΆ

  • 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'custom'
  • 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'custom'
  • None | 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar'
  • None | 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar'
  • None | 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'custom'
  • None | 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'custom'
  • array, [n_samples]
  • array, [n_samples]
  • array, shape (n_samples,), optional
  • array, shape (n_samples,), optional
  • int,
  • int,
  • "all" or array of indices or mask
  • "all" or array of indices or mask
  • "array-like, shape (n_samples,)
  • "array-like, shape (n_samples,)
  • "auto", "full" or "elkan", default="auto"
  • "auto", "full" or "elkan", default="auto"
  • "linear" | "poly" | "rbf" | "sigmoid" | "cosine" | "precomputed"
  • "linear" | "poly" | "rbf" | "sigmoid" | "cosine" | "precomputed"
  • 'F', 'C' or None (default=None)
  • 'F', 'C' or None (default=None)
  • 'auto' (default), 'QR', 'LU', 'none'
  • 'auto' (default), 'QR', 'LU', 'none'
  • 'auto' or a list of lists/arrays of values.
  • 'auto' or a list of lists/arrays of values.
  • 'batch' | 'online', default='online'
  • 'batch' | 'online', default='online'
  • 'bic' | 'aic'
  • 'bic' | 'aic'
  • 'both' | 'components' | 'transformation' | None
  • 'both' | 'components' | 'transformation' | None
  • 'cd' | 'mu'
  • 'cd' | 'mu'
  • 'dense' (default) | 'sparse' | False
  • 'dense' (default) | 'sparse' | False
  • 'error' (default) or 'ignore'
  • 'error' (default) or 'ignore'
  • 'euclidean' | 'precomputed', optional, default: 'euclidean'
  • 'euclidean' | 'precomputed', optional, default: 'euclidean'
  • 'l1', 'l2' or None, optional
  • 'l1', 'l2' or None, optional
  • 'l1', 'l2', or 'max', optional ('l2' by default)
  • 'l1', 'l2', or 'max', optional ('l2' by default)
  • 'log' | 'squared' | 'multinomial'
  • 'log' | 'squared' | 'multinomial'
  • 'ovo', 'ovr', default='ovr'
  • 'ovo', 'ovr', default='ovr'
  • 'raise' (default) or numeric
  • 'raise' (default) or numeric
  • 'sigmoid' or 'isotonic'
  • 'sigmoid' or 'isotonic'
  • 'sigmoid' | 'isotonic'
  • 'sigmoid' | 'isotonic'
  • 'train' or 'test', 'all', optional
  • 'train' or 'test', 'all', optional
  • (ignored)
  • (ignored)
  • (low, high), default=(0.05, 0.95)
  • (low, high), default=(0.05, 0.95)
  • (n_components, n_components) array, optional
  • (n_components, n_components) array, optional
  • (n_samples, n_features)
  • (n_samples, n_features)
  • (rows, columns)
  • (rows, columns)
  • (sparse) array-like, shape (n_samples, n_features)
  • (sparse) array-like, shape (n_samples, n_features)
  • (sparse) array-like, shape (n_samples, n_outputs)
  • (sparse) array-like, shape (n_samples, n_outputs)
  • (sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]
  • (sparse) array-like, shape = [n_samples, ], [n_samples, n_classes]
  • (sparse) array-like, shape = [n_samples, ], [n_samples, n_classes].
  • (sparse) array-like, shape = [n_samples, ], [n_samples, n_classes].
  • (sparse) array-like, shape = [n_samples, n_classes]
  • (sparse) array-like, shape = [n_samples, n_classes]
  • (sparse) array-like, shape = [n_samples, n_features]
  • (sparse) array-like, shape = [n_samples, n_features]
  • 0 < double < 1 (default=.8)
  • 0 < double < 1 (default=.8)
  • 0 or 1, optional (1 by default)
  • 0 or 1, optional (1 by default)
  • 1D array, shape (n_nodes, ) or None
  • 1D array, shape (n_nodes, ) or None
  • 1D array, shape (n_nodes-1, )
  • 1D array, shape (n_nodes-1, )
  • 1d boolean nd-array
  • 1d boolean nd-array
  • 2-tuple, optional
  • 2-tuple, optional
  • 2D array (n_features, n_features), optional
  • 2D array (n_features, n_features), optional
  • 2D array of indices
  • 2D array of indices
  • 2D array, (n_features, n_features)
  • 2D array, (n_features, n_features)
  • 2D array, shape (n_components, n_features)
  • 2D array, shape (n_components, n_features)
  • 2D array, shape (n_nodes-1, 2)
  • 2D array, shape (n_nodes-1, 2)
  • 2D array, shape (n_test_samples, n_features), optional
  • 2D array, shape (n_test_samples, n_features), optional
  • 2D ndarray (n_features, n_features)
  • 2D ndarray (n_features, n_features)
  • 2D ndarray, shape (n_features, n_features)
  • 2D ndarray, shape (n_features, n_features)
  • 2D ndarray, shape (n_samples, n_features)
  • 2D ndarray, shape (n_samples, n_features)
  • 2D numpy.ndarray (n_alphas, n_folds)
  • 2D numpy.ndarray (n_alphas, n_folds)
  • A collection of strings or None, optional (default=None)
  • A collection of strings or None, optional (default=None)
  • A single callable or dict mapping scorer name to the callable
  • A single callable or dict mapping scorer name to the callable
  • All parameters are stored in the Gaussian Process model object.
  • All parameters are stored in the Gaussian Process model object.
  • BaseEstimator
  • BaseEstimator
  • BaseEstimator, None, optional (default=None)
  • BaseEstimator, None, optional (default=None)
  • BaseGradientBoosting
  • BaseGradientBoosting
  • BernoulliRBM
  • BernoulliRBM
  • Boolean
  • Boolean
  • Bunch
  • Bunch
  • Bunch object, a dictionary with attribute access
  • Bunch object, a dictionary with attribute access
  • CSC or CSR matrix with shape (n_samples, n_features)
  • CSC or CSR matrix with shape (n_samples, n_features)
  • CSC sparse matrix, shape (n_samples, n_features)
  • CSC sparse matrix, shape (n_samples, n_features)
  • CSR matrix with shape (n_samples, n_features)
  • CSR matrix with shape (n_samples, n_features)
  • CSR matrix with shape [n_components, n_features]
  • CSR matrix with shape [n_components, n_features]
  • CSR or CSC sparse matrix, shape (n_samples, n_features)
  • CSR or CSC sparse matrix, shape (n_samples, n_features)
  • CSR or CSC sparse matrix, shape=(n_samples, n_features)
  • CSR or CSC sparse matrix, shape=(n_samples, n_features)
  • CSR sparse matrix, shape (n_samples, n_features)
  • CSR sparse matrix, shape (n_samples, n_features)
  • CSR sparse matrix, shape = (n_samples, n_labels)
  • CSR sparse matrix, shape = (n_samples, n_labels)
  • FeatureHasher
  • FeatureHasher
  • FeatureUnion
  • FeatureUnion
  • Ignored
  • Ignored
  • Imputer
  • Imputer
  • LabelBinarizer object
  • LabelBinarizer object
  • List of 2D ndarray, shape (n_features, n_features)
  • List of 2D ndarray, shape (n_features, n_features)
  • List of float
  • List of float
  • LossFunction
  • LossFunction
  • Mapping
  • Mapping
  • Mapping or iterable over Mappings
  • Mapping or iterable over Mappings
  • Mapping or iterable over Mappings, length = n_samples
  • Mapping or iterable over Mappings, length = n_samples
  • Mapping or iterable, optional
  • Mapping or iterable, optional
  • Matplotlib axis object, default None
  • Matplotlib axis object, default None
  • NearestNeighbors object
  • NearestNeighbors object
  • None of an (n_components, n_components) ndarray
  • None of an (n_components, n_components) ndarray
  • None or array, shape=(n_samples, n_components)
  • None or array, shape=(n_samples, n_components)
  • None or collection of string or unicode
  • None or collection of string or unicode
  • None or dtype, optional
  • None or dtype, optional
  • None or float, optional.
  • None or float, optional.
  • None | array, shape=(n_components, n_components)
  • None | array, shape=(n_components, n_components)
  • None | array, shape=(n_features,)
  • None | array, shape=(n_features,)
  • None | int | instance of RandomState
  • None | int | instance of RandomState
  • None | list
  • None | list
  • None, 'SA', 'SF', 'http', 'smtp'
  • None, 'SA', 'SF', 'http', 'smtp'
  • None, 'l2' or 'l1' or 'elasticnet'
  • None, 'l2' or 'l1' or 'elasticnet'
  • None, 0 or 1
  • None, 0 or 1
  • None, int or RandomState, default=None
  • None, int or RandomState, default=None
  • None, str or object with the joblib.Memory interface
  • None, str or object with the joblib.Memory interface
  • None, str or object with the joblib.Memory interface, optional
  • None, str or object with the joblib.Memory interface, optional
  • None, str or object with the joblib.Memory interface, optional (default=None)
  • None, str or object with the joblib.Memory interface, optional (default=None)
  • Numpy Array
  • Numpy Array
  • Passthrough for Pipeline compatibility.
  • Passthrough for Pipeline compatibility.
  • Pipeline
  • Pipeline
  • RandomState
  • RandomState
  • RandomState instance or None
  • RandomState instance or None
  • Returns self.
  • Returns self.
  • String. Name of csv file to be loaded from
  • String. Name of csv file to be loaded from
  • TfidfVectorizer
  • TfidfVectorizer
  • True | False | 'auto'
  • True | False | 'auto'
  • True | False | 'auto' | array-like
  • True | False | 'auto' | array-like
  • True | False | array-like
  • True | False | array-like
  • True | False | array-like, default=False
  • True | False | array-like, default=False
  • True, False or 'auto' (default)
  • True, False or 'auto' (default)
  • True, bool,
  • True, bool,
  • ['auto'|'arpack'|'dense']
  • ['auto'|'arpack'|'dense']
  • _CFNode
  • _CFNode
  • a cross-validation generator instance.
  • a cross-validation generator instance.
  • a cross-validator instance.
  • a cross-validator instance.
  • a numpy dtype or None
  • a numpy dtype or None
  • an estimator
  • an estimator
  • an integer, (default 500)
  • an integer, (default 500)
  • any
  • any
  • array (opt.), shape (n_samples_X, n_samples_X, n_dims)
  • array (opt.), shape (n_samples_X, n_samples_X, n_dims)
  • array [n_core_samples]
  • array [n_core_samples]
  • array [n_samples]
  • array [n_samples]
  • array [n_samples_a, n_samples_a] if metric == "precomputed", or, [n_samples_a, n_features] otherwise
  • array [n_samples_a, n_samples_a] if metric == "precomputed", or, [n_samples_a, n_features] otherwise
  • array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]
  • array [n_samples_a, n_samples_a] or [n_samples_a, n_samples_b]
  • array [n_samples_b, n_features]
  • array [n_samples_b, n_features]
  • array [n_samples_b, n_features], optional
  • array [n_samples_b, n_features], optional
  • array like or sparse matrix of size (n_samples, n_outputs)
  • array like or sparse matrix of size (n_samples, n_outputs)
  • array of float, shape (n_features,)
  • array of float, shape (n_features,)
  • array of float, shape = [n_samples] or [n_samples, n_outputs]
  • array of float, shape = [n_samples] or [n_samples, n_outputs]
  • array of float, shape=(len(list(cv)),)
  • array of float, shape=(len(list(cv)),)
  • array of floats with shape [n_features]
  • array of floats with shape [n_features]
  • array of int or None, default=None
  • array of int or None, default=None
  • array of int, shape = [n_samples] or [n_samples, n_outputs]
  • array of int, shape = [n_samples] or [n_samples, n_outputs]
  • array of integers, shape: n_samples
  • array of integers, shape: n_samples
  • array of labels
  • array of labels
  • array of shape (n)
  • array of shape (n)
  • array of shape (n_clusters, X.shape[0],)
  • array of shape (n_clusters, X.shape[0],)
  • array of shape (n_clusters, X.shape[1],)
  • array of shape (n_clusters, X.shape[1],)
  • array of shape (n_components, n_features)
  • array of shape (n_components, n_features)
  • array of shape (n_components, n_features),
  • array of shape (n_components, n_features),
  • array of shape (n_components, n_samples)
  • array of shape (n_components, n_samples)
  • array of shape (n_features, n_components)
  • array of shape (n_features, n_components)
  • array of shape (n_features, n_samples)
  • array of shape (n_features, n_samples)
  • array of shape (n_features,)
  • array of shape (n_features,)
  • array of shape (n_samples, n_components)
  • array of shape (n_samples, n_components)
  • array of shape (n_samples, n_components),
  • array of shape (n_samples, n_components),
  • array of shape (n_samples, n_dimensions)
  • array of shape (n_samples, n_dimensions)
  • array of shape (n_samples, n_features)
  • array of shape (n_samples, n_features)
  • array of shape (n_samples,)
  • array of shape (n_samples,)
  • array of shape (n_samples_1, n_features)
  • array of shape (n_samples_1, n_features)
  • array of shape (n_samples_2, n_features)
  • array of shape (n_samples_2, n_features)
  • array of shape (n_samples_X, n_features)
  • array of shape (n_samples_X, n_features)
  • array of shape (n_samples_X, n_samples_Y)
  • array of shape (n_samples_X, n_samples_Y)
  • array of shape (n_samples_Y, n_features)
  • array of shape (n_samples_Y, n_features)
  • array of shape = [n_classes]
  • array of shape = [n_classes]
  • array of shape = [n_classes] or a list of such arrays
  • array of shape = [n_classes] or a list of such arrays
  • array of shape = [n_features]
  • array of shape = [n_features]
  • array of shape = [n_samples, n_classes]
  • array of shape = [n_samples, n_classes]
  • array of shape = [n_samples, n_classes], or a list of n_outputs
  • array of shape = [n_samples, n_classes], or a list of n_outputs
  • array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1.
  • array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1.
  • array of shape = [n_samples]
  • array of shape = [n_samples]
  • array of shape = [n_samples] or [n_samples, n_outputs]
  • array of shape = [n_samples] or [n_samples, n_outputs]
  • array of shape [n_class]
  • array of shape [n_class]
  • array of shape [n_components, n_samples]
  • array of shape [n_components, n_samples]
  • array of shape [n_dim, n_dim]
  • array of shape [n_dim, n_dim]
  • array of shape [n_features, n_components]
  • array of shape [n_features, n_components]
  • array of shape [n_features, n_samples]
  • array of shape [n_features, n_samples]
  • array of shape [n_features]
  • array of shape [n_features]
  • array of shape [n_features] or [n_features, n_targets], optional
  • array of shape [n_features] or [n_features, n_targets], optional
  • array of shape [n_features], optional (default=None)
  • array of shape [n_features], optional (default=None)
  • array of shape [n_samples, 10]
  • array of shape [n_samples, 10]
  • array of shape [n_samples, 2]
  • array of shape [n_samples, 2]
  • array of shape [n_samples, 3]
  • array of shape [n_samples, 3]
  • array of shape [n_samples, 4]
  • array of shape [n_samples, 4]
  • array of shape [n_samples, n_features]
  • array of shape [n_samples, n_features]
  • array of shape [n_samples, n_original_features]
  • array of shape [n_samples, n_original_features]
  • array of shape [n_samples, n_selected_features]
  • array of shape [n_samples, n_selected_features]
  • array of shape [n_samples,] or [n_samples, n_classes]
  • array of shape [n_samples,] or [n_samples, n_classes]
  • array of shape [n_samples]
  • array of shape [n_samples]
  • array of shape [n_samples] or [n_samples, n_outputs]
  • array of shape [n_samples] or [n_samples, n_outputs]
  • array of shape [n_samples] or [n_samples, n_targets]
  • array of shape [n_samples] or [n_samples, n_targets]
  • array of shape [n_subsets_of_features]
  • array of shape [n_subsets_of_features]
  • array of shape shape
  • array of shape shape
  • array of shape(n_samples)
  • array of shape(n_samples)
  • array of shape(n_samples).
  • array of shape(n_samples).
  • array of shape(n_samples, n_dimensions)
  • array of shape(n_samples, n_dimensions)
  • array of size (n_estimators + 1, )
  • array of size (n_estimators + 1, )
  • array or CSR matrix of shape [n_samples, n_classes]
  • array or CSR matrix of shape [n_samples, n_classes]
  • array or CSR matrix with shape [n_components, n_features]
  • array or CSR matrix with shape [n_components, n_features]
  • array or CSR matrix, shape (n_samples, n_classes)
  • array or CSR matrix, shape (n_samples, n_classes)
  • array or None, shape (n_targets,)
  • array or None, shape (n_targets,)
  • array or list of array of shape (n_classes,)
  • array or list of array of shape (n_classes,)
  • array or list of array of shape = [n_classes]
  • array or list of array of shape = [n_classes]
  • array or sparse (CSR) matrix of shape (n_samples, n_features), or array of shape (n_samples, n_samples)
  • array or sparse (CSR) matrix of shape (n_samples, n_features), or array of shape (n_samples, n_samples)
  • array or sparse (CSR) matrix of shape (n_samples, n_features), or array of shape (n_samples, n_samples)
  • array or sparse (CSR) matrix of shape (n_samples, n_features), or array of shape (n_samples, n_samples)
  • array or sparse CSR matrix of shape [n_samples, n_classes]
  • array or sparse CSR matrix of shape [n_samples, n_classes]
  • array or sparse matrix of shape (n_samples, n_classes)
  • array or sparse matrix of shape (n_samples, n_classes)
  • array or sparse matrix of shape [n_samples,] or [n_samples, n_classes]
  • array or sparse matrix of shape [n_samples,] or [n_samples, n_classes]
  • array or sparse matrix, shape = [n_samples, n_labels]
  • array or sparse matrix, shape = [n_samples, n_labels]
  • array or sparse matrix, shape=(n_samples, n_features_new)
  • array or sparse matrix, shape=(n_samples, n_features_new)
  • array with shape (n_samples * (n_samples - 1) / 2, n_features)
  • array with shape (n_samples * (n_samples - 1) / 2, n_features)
  • array,
  • array,
  • array, (n_components, n_features)
  • array, (n_components, n_features)
  • array, (n_components,)
  • array, (n_components,)
  • array, (n_samples, n_components)
  • array, (n_samples, n_components)
  • array, (n_samples, n_features)
  • array, (n_samples, n_features)
  • array, [n_clusters, n_features]
  • array, [n_clusters, n_features]
  • array, [n_components, n_features]
  • array, [n_components, n_features]
  • array, [n_samples, n_components]
  • array, [n_samples, n_components]
  • array, [n_samples, n_features]
  • array, [n_samples, n_features]
  • array, [n_samples]
  • array, [n_samples]
  • array, [p, n_components]
  • array, [p, n_components]
  • array, [p, q]
  • array, [p, q]
  • array, [q, n_components]
  • array, [q, n_components]
  • array, dtype float, shape (n_samples), optional
  • array, dtype float, shape (n_samples), optional
  • array, optional, default None
  • array, optional, default None
  • array, optional, shape (n_classes,)
  • array, optional, shape (n_classes,)
  • array, optional, shape = [n_classes]
  • array, optional, shape = [n_classes]
  • array, same shape as n_samples_leaf
  • array, same shape as n_samples_leaf
  • array, shap (n_samples,)
  • array, shap (n_samples,)
  • array, shape (1, n_features) if n_classes == 2 else (n_classes, n_features)
  • array, shape (1, n_features) if n_classes == 2 else (n_classes, n_features)
  • array, shape (1, n_features) or (n_classes, n_features)
  • array, shape (1, n_features) or (n_classes, n_features)
  • array, shape (1,)
  • array, shape (1,)
  • array, shape (1,) if n_classes == 2 else (n_classes,)
  • array, shape (1,) if n_classes == 2 else (n_classes,)
  • array, shape (1,) or (n_classes,)
  • array, shape (1,) or (n_classes,)
  • array, shape (M, N)
  • array, shape (M, N)
  • array, shape (M, N) or (M, )
  • array, shape (M, N) or (M, )
  • array, shape (n_components, n_features)
  • array, shape (n_components, n_features)
  • array, shape (n_components,)
  • array, shape (n_components,)
  • array, shape (k, n_features)
  • array, shape (k, n_features)
  • array, shape (k,)
  • array, shape (k,)
  • array, shape (n_alphas + 1,) | list of n_targets such arrays
  • array, shape (n_alphas + 1,) | list of n_targets such arrays
  • array, shape (n_alphas, n_folds)
  • array, shape (n_alphas, n_folds)
  • array, shape (n_alphas, n_folds) or (n_l1_ratio, n_alphas, n_folds)
  • array, shape (n_alphas, n_folds) or (n_l1_ratio, n_alphas, n_folds)
  • array, shape (n_alphas,)
  • array, shape (n_alphas,)
  • array, shape (n_bins,)
  • array, shape (n_bins,)
  • array, shape (n_classes * n_features,) or
  • array, shape (n_classes * n_features,) or
  • array, shape (n_classes)
  • array, shape (n_classes)
  • array, shape (n_classes, )
  • array, shape (n_classes, )
  • array, shape (n_classes, n_features)
  • array, shape (n_classes, n_features)
  • array, shape (n_classes, n_folds, n_cs) or (1, n_folds, n_cs)
  • array, shape (n_classes, n_folds, n_cs) or (1, n_folds, n_cs)
  • array, shape (n_classes,)
  • array, shape (n_classes,)
  • array, shape (n_classes,) or (1, )
  • array, shape (n_classes,) or (1, )
  • array, shape (n_classes,) or (n_classes - 1,)
  • array, shape (n_classes,) or (n_classes - 1,)
  • array, shape (n_clusters, n_features)
  • array, shape (n_clusters, n_features)
  • array, shape (n_clusters,)
  • array, shape (n_clusters,)
  • array, shape (n_components)
  • array, shape (n_components)
  • array, shape (n_components, n_components)
  • array, shape (n_components, n_components)
  • array, shape (n_components, n_features)
  • array, shape (n_components, n_features)
  • array, shape (n_components, n_features) | None.
  • array, shape (n_components, n_features) | None.
  • array, shape (n_components, n_features, n_features)
  • array, shape (n_components, n_features, n_features)
  • array, shape (n_components,)
  • array, shape (n_components,)
  • array, shape (n_cs,)
  • array, shape (n_cs,)
  • array, shape (n_cv_alphas,)
  • array, shape (n_cv_alphas,)
  • array, shape (n_dims,)
  • array, shape (n_dims,)
  • array, shape (n_estimators, n_samples)
  • array, shape (n_estimators, n_samples)
  • array, shape (n_features)
  • array, shape (n_features)
  • array, shape (n_features, )
  • array, shape (n_features, )
  • array, shape (n_features, ) or (n_targets, n_features)
  • array, shape (n_features, ) or (n_targets, n_features)
  • array, shape (n_features, ) | None
  • array, shape (n_features, ) | None
  • array, shape (n_features, n_alphas + 1) | list of n_targets such arrays
  • array, shape (n_features, n_alphas + 1) | list of n_targets such arrays
  • array, shape (n_features, n_alphas + 1) or list
  • array, shape (n_features, n_alphas + 1) or list
  • array, shape (n_features, n_alphas)
  • array, shape (n_features, n_alphas)
  • array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)
  • array, shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas)
  • array, shape (n_features, n_components)
  • array, shape (n_features, n_components)
  • array, shape (n_features, n_features)
  • array, shape (n_features, n_features)
  • array, shape (n_features, n_nonzero_coefs)
  • array, shape (n_features, n_nonzero_coefs)
  • array, shape (n_features,)
  • array, shape (n_features,)
  • array, shape (n_features,) or (n_classes, n_features)
  • array, shape (n_features,) or (n_classes, n_features)
  • array, shape (n_features,) or (n_features, n_targets)
  • array, shape (n_features,) or (n_features, n_targets)
  • array, shape (n_features,) or (n_targets, n_features)
  • array, shape (n_features,) or (n_targets, n_features)
  • array, shape (n_features,) | (n_targets, n_features)
  • array, shape (n_features,) | (n_targets, n_features)
  • array, shape (n_folds, n_cv_alphas)
  • array, shape (n_folds, n_cv_alphas)
  • array, shape (n_l1_ratio, n_alpha, n_folds)
  • array, shape (n_l1_ratio, n_alpha, n_folds)
  • array, shape (n_nonzero_coefs,)
  • array, shape (n_nonzero_coefs,)
  • array, shape (n_params,)
  • array, shape (n_params,)
  • array, shape (n_permutations,)
  • array, shape (n_permutations,)
  • array, shape (n_query, self.n_neighbors)
  • array, shape (n_query, self.n_neighbors)
  • array, shape (n_samples * (n_samples-1) / 2,)
  • array, shape (n_samples * (n_samples-1) / 2,)
  • array, shape (n_samples, k)
  • array, shape (n_samples, k)
  • array, shape (n_samples, n_classes)
  • array, shape (n_samples, n_classes)
  • array, shape (n_samples, n_component)
  • array, shape (n_samples, n_component)
  • array, shape (n_samples, n_components)
  • array, shape (n_samples, n_components)
  • array, shape (n_samples, n_components) | None
  • array, shape (n_samples, n_components) | None
  • array, shape (n_samples, n_features)
  • array, shape (n_samples, n_features)
  • array, shape (n_samples, n_features) or (n_samples, n_samples)
  • array, shape (n_samples, n_features) or (n_samples, n_samples)
  • array, shape (n_samples, n_neighbors)
  • array, shape (n_samples, n_neighbors)
  • array, shape (n_samples, n_samples)
  • array, shape (n_samples, n_samples)
  • array, shape (n_samples,)
  • array, shape (n_samples,)
  • array, shape (n_samples,) of arrays
  • array, shape (n_samples,) of arrays
  • array, shape (n_samples,) or (n_samples, n_targets)
  • array, shape (n_samples,) or (n_samples, n_targets)
  • array, shape (n_samples,), optional
  • array, shape (n_samples,), optional
  • array, shape (n_samples_X, n_features)
  • array, shape (n_samples_X, n_features)
  • array, shape (n_samples_X, n_kernels)
  • array, shape (n_samples_X, n_kernels)
  • array, shape (n_samples_X, n_samples_X, n_dims, n_kernels)
  • array, shape (n_samples_X, n_samples_X, n_dims, n_kernels)
  • array, shape (n_samples_X, n_samples_Y)
  • array, shape (n_samples_X, n_samples_Y)
  • array, shape (n_samples_X, n_samples_Y, n_kernels)
  • array, shape (n_samples_X, n_samples_Y, n_kernels)
  • array, shape (n_samples_X,)
  • array, shape (n_samples_X,)
  • array, shape (n_samples_Y, n_features), (optional, default=None)
  • array, shape (n_samples_Y, n_features), (optional, default=None)
  • array, shape (n_tasks, n_features)
  • array, shape (n_tasks, n_features)
  • array, shape (n_tasks,)
  • array, shape (n_tasks,)
  • array, shape (n_ticks, n_cv_folds)
  • array, shape (n_ticks, n_cv_folds)
  • array, shape (n_unique_ticks,), dtype int
  • array, shape (n_unique_ticks,), dtype int
  • array, shape (nsamples,)
  • array, shape (nsamples,)
  • array, shape = (n_samples, )
  • array, shape = (n_samples, )
  • array, shape = (image_height, image_width) or
  • array, shape = (image_height, image_width) or
  • array, shape = (n_features)
  • array, shape = (n_features)
  • array, shape = (n_features, n_features)
  • array, shape = (n_features, n_features)
  • array, shape = (n_features,)
  • array, shape = (n_features,)
  • array, shape = (n_kernel_params,), optional
  • array, shape = (n_kernel_params,), optional
  • array, shape = (n_patches, patch_height, patch_width) or
  • array, shape = (n_patches, patch_height, patch_width) or
  • array, shape = (n_samples, ), dtype = bool
  • array, shape = (n_samples, ), dtype = bool
  • array, shape = (n_samples, [n_output_dims])
  • array, shape = (n_samples, [n_output_dims])
  • array, shape = (n_samples, image_height, image_width) or
  • array, shape = (n_samples, image_height, image_width) or
  • array, shape = (n_samples, n_samples), optional
  • array, shape = (n_samples, n_samples), optional
  • array, shape = (n_samples,)
  • array, shape = (n_samples,)
  • array, shape = (n_samples,) component memberships
  • array, shape = (n_samples,) component memberships
  • array, shape = (n_samples,), optional
  • array, shape = (n_samples,), optional
  • array, shape = (n_samples_X, [n_output_dims], n_samples)
  • array, shape = (n_samples_X, [n_output_dims], n_samples)
  • array, shape = (n_unique_ticks,), dtype int
  • array, shape = (n_unique_ticks,), dtype int
  • array, shape = [1, n_SV]
  • array, shape = [1, n_SV]
  • array, shape = [1, n_features]
  • array, shape = [1, n_features]
  • array, shape = [1, n_features] if n_classes == 2 else [n_classes, n_features]
  • array, shape = [1, n_features] if n_classes == 2 else [n_classes, n_features]
  • array, shape = [1,]
  • array, shape = [1,]
  • array, shape = [14, 1592, 1212]
  • array, shape = [14, 1592, 1212]
  • array, shape = [1]
  • array, shape = [1]
  • array, shape = [1] if n_classes == 2 else [n_classes]
  • array, shape = [1] if n_classes == 2 else [n_classes]
  • array, shape = [>2]
  • array, shape = [>2]
  • array, shape = [n_classes]
  • array, shape = [n_classes]
  • array, shape = [n]
  • array, shape = [n]
  • array, shape = [n_class * (n_class-1) / 2]
  • array, shape = [n_class * (n_class-1) / 2]
  • array, shape = [n_class-1, n_SV]
  • array, shape = [n_class-1, n_SV]
  • array, shape = [n_class-1, n_features]
  • array, shape = [n_class-1, n_features]
  • array, shape = [n_classes, n_classes]
  • array, shape = [n_classes, n_classes]
  • array, shape = [n_classes, n_features]
  • array, shape = [n_classes, n_features]
  • array, shape = [n_classes,n_features]
  • array, shape = [n_classes,n_features]
  • array, shape = [n_classes]
  • array, shape = [n_classes]
  • array, shape = [n_classes], optional
  • array, shape = [n_classes], optional
  • array, shape = [n_core_samples, n_features]
  • array, shape = [n_core_samples, n_features]
  • array, shape = [n_core_samples]
  • array, shape = [n_core_samples]
  • array, shape = [n_estimators]
  • array, shape = [n_estimators]
  • array, shape = [n_features, n_grid]
  • array, shape = [n_features, n_grid]
  • array, shape = [n_features, n_reg_parameter]
  • array, shape = [n_features, n_reg_parameter]
  • array, shape = [n_features,]
  • array, shape = [n_features,]
  • array, shape = [n_features]
  • array, shape = [n_features]
  • array, shape = [n_features] if n_classes == 2 else [n_classes, n_features]
  • array, shape = [n_features] if n_classes == 2 else [n_classes, n_features]
  • array, shape = [n_features] or [n_targets, n_features]
  • array, shape = [n_features] or [n_targets, n_features]
  • array, shape = [n_features], or None
  • array, shape = [n_features], or None
  • array, shape = [n_labels]
  • array, shape = [n_labels]
  • array, shape = [n_labels], optional
  • array, shape = [n_labels], optional
  • array, shape = [n_labels], optional (default=None)
  • array, shape = [n_labels], optional (default=None)
  • array, shape = [n_observations,]
  • array, shape = [n_observations,]
  • array, shape = [n_samples, k]
  • array, shape = [n_samples, k]
  • array, shape = [n_samples, n_alphas] or shape = [n_samples, n_targets, n_alphas], optional
  • array, shape = [n_samples, n_alphas] or shape = [n_samples, n_targets, n_alphas], optional
  • array, shape = [n_samples, n_alphas] or shape = [n_samples, n_responses, n_alphas], optional
  • array, shape = [n_samples, n_alphas] or shape = [n_samples, n_responses, n_alphas], optional
  • array, shape = [n_samples, n_classes]
  • array, shape = [n_samples, n_classes]
  • array, shape = [n_samples, n_classes] or [n_samples,]
  • array, shape = [n_samples, n_classes] or [n_samples,]
  • array, shape = [n_samples, n_classes] or [n_samples]
  • array, shape = [n_samples, n_classes] or [n_samples]
  • array, shape = [n_samples, n_clusters] or [n_clusters]
  • array, shape = [n_samples, n_clusters] or [n_clusters]
  • array, shape = [n_samples, n_components]
  • array, shape = [n_samples, n_components]
  • array, shape = [n_samples, n_features]
  • array, shape = [n_samples, n_features]
  • array, shape = [n_samples, n_labels]
  • array, shape = [n_samples, n_labels]
  • array, shape = [n_samples]
  • array, shape = [n_samples]
  • array, shape = [n_samples] or [n_samples, n_outputs]
  • array, shape = [n_samples] or [n_samples, n_outputs]
  • array, shape = [n_samples] or [n_samples, n_classes]
  • array, shape = [n_samples] or [n_samples, n_classes]
  • array, shape = [n_samples] or [n_samples, n_outputs]
  • array, shape = [n_samples] or [n_samples, n_outputs]
  • array, shape = [n_samples] or [n_samples, n_targets]
  • array, shape = [n_samples] or [n_samples, n_targets]
  • array, shape = [n_subpopulation, n_features + intercept]
  • array, shape = [n_subpopulation, n_features + intercept]
  • array, shape = [n_subpopulation, n_subsamples]
  • array, shape = [n_subpopulation, n_subsamples]
  • array, shape = [n_thresholds + 1]
  • array, shape = [n_thresholds + 1]
  • array, shape = [n_thresholds <= len(np.unique(probas_pred))]
  • array, shape = [n_thresholds <= len(np.unique(probas_pred))]
  • array, shape = [n_thresholds <= len(np.unique(y_score))]
  • array, shape = [n_thresholds <= len(np.unique(y_score))]
  • array, shape = [n_thresholds]
  • array, shape = [n_thresholds]
  • array, shape = [p, n_components]
  • array, shape = [p, n_components]
  • array, shape = [q, n_components]
  • array, shape = [q, n_components]
  • array, shape = image_size
  • array, shape = image_size
  • array, shape [n_classes]
  • array, shape [n_classes]
  • array, shape [n_features, n_classes]
  • array, shape [n_features, n_classes]
  • array, shape [n_samples, k]
  • array, shape [n_samples, k]
  • array, shape [n_samples,]
  • array, shape [n_samples,]
  • array, shape [n_samples] if axis=1 else [n_features]
  • array, shape [n_samples] if axis=1 else [n_features]
  • array, shape (n_folds, len(Cs_), n_features) or (n_folds, len(Cs_), n_features + 1)
  • array, shape (n_folds, len(Cs_), n_features) or (n_folds, len(Cs_), n_features + 1)
  • array, shape ~ [n_grid]
  • array, shape ~ [n_grid]
  • array, shape(k, n_features)
  • array, shape(k, n_features)
  • array, shape(n_cs,)
  • array, shape(n_cs,)
  • array, shape(n_samples, n_features)
  • array, shape(n_samples, n_features)
  • array, shape=(n_classes, n_points)
  • array, shape=(n_classes, n_points)
  • array, shape=(n_components, n_components)
  • array, shape=(n_components, n_components)
  • array, shape=(n_components, n_samples)
  • array, shape=(n_components, n_samples)
  • array, shape=(n_features,)
  • array, shape=(n_features,)
  • array, shape=(n_samples, n_components)
  • array, shape=(n_samples, n_components)
  • array, shape=(n_samples,)
  • array, shape=(n_samples,)
  • array, shape=[n_clusters, n_features]
  • array, shape=[n_clusters, n_features]
  • array, shape=[n_samples, n_features] or [n_features]
  • array, shape=[n_samples, n_features] or [n_features]
  • array, shape=[n_samples, n_features], optional
  • array, shape=[n_samples, n_features], optional
  • array, shape=[n_samples]
  • array, shape=[n_samples]
  • array-like of float, shape = (n_samples, n_classes)
  • array-like of float, shape = (n_samples, n_classes)
  • array-like of float, shape = (n_samples, n_classes) or (n_samples,)
  • array-like of float, shape = (n_samples, n_classes) or (n_samples,)
  • array-like of floats, shape (n_samples, n_features)
  • array-like of floats, shape (n_samples, n_features)
  • array-like of int with shape (n_samples,)
  • array-like of int with shape (n_samples,)
  • array-like of shape (n_samples, n_estimators), or int.
  • array-like of shape (n_samples, n_estimators), or int.
  • array-like of shape (n_samples, n_features)
  • array-like of shape (n_samples, n_features)
  • array-like of shape (n_samples,)
  • array-like of shape (n_samples,)
  • array-like of shape (n_samples_X, n_features)
  • array-like of shape (n_samples_X, n_features)
  • array-like of shape = (n_outputs) or string in ['raw_values',
  • array-like of shape = (n_outputs) or string in ['raw_values',
  • array-like of shape = (n_samples)
  • array-like of shape = (n_samples)
  • array-like of shape = (n_samples) or (n_samples, n_outputs)
  • array-like of shape = (n_samples) or (n_samples, n_outputs)
  • array-like of shape = (n_samples), optional
  • array-like of shape = (n_samples), optional
  • array-like of shape = (n_samples, n_outputs)
  • array-like of shape = (n_samples, n_outputs)
  • array-like of shape = (n_samples,), optional
  • array-like of shape = (n_samples,), optional
  • array-like of shape = [n_samples, n_features]
  • array-like of shape = [n_samples, n_features]
  • array-like of shape = [n_samples]
  • array-like of shape = [n_samples]
  • array-like of shape = [n_samples] or None
  • array-like of shape = [n_samples] or None
  • array-like of shape = [n_samples], default None
  • array-like of shape = [n_samples], default None
  • array-like of shape = [n_samples], optional
  • array-like of shape = [n_samples], optional
  • array-like of shape [n_classes]
  • array-like of shape [n_classes]
  • array-like of shape [n_classes] (optional)
  • array-like of shape [n_classes] (optional)
  • array-like of shape [n_samples, n_features]
  • array-like of shape [n_samples, n_features]
  • array-like of shape [n_samples]
  • array-like of shape [n_samples]
  • array-like of shape [n_samples] (optional)
  • array-like of shape [n_samples] (optional)
  • array-like of shape at least 2D
  • array-like of shape at least 2D
  • array-like or BallTree, shape = [n_samples, n_features]
  • array-like or BallTree, shape = [n_samples, n_features]
  • array-like or None (default is None)
  • array-like or None (default is None)
  • array-like or callable, optional
  • array-like or callable, optional
  • array-like or list of array-like of shape = [n_samples, n_classes]
  • array-like or list of array-like of shape = [n_samples, n_classes]
  • array-like or list of array-lke of shape = [n_samples, n_classes]
  • array-like or list of array-lke of shape = [n_samples, n_classes]
  • array-like or sparse matrix of shape = [n_samples, n_features]
  • array-like or sparse matrix of shape = [n_samples, n_features]
  • array-like or sparse matrix, shape (n_samples, n_features)
  • array-like or sparse matrix, shape (n_samples, n_features)
  • array-like or sparse matrix, shape (n_samples, sum_n_components)
  • array-like or sparse matrix, shape (n_samples, sum_n_components)
  • array-like or sparse matrix, shape = [n_samples, n_features]
  • array-like or sparse matrix, shape = [n_samples, n_features]
  • array-like or sparse matrix, shape [n_samples, n_encoded_features]
  • array-like or sparse matrix, shape [n_samples, n_encoded_features]
  • array-like or sparse matrix, shape [n_samples, n_features]
  • array-like or sparse matrix, shape [n_samples, n_features]
  • array-like or sparse matrix, shape: (n_samples, n_samples)
  • array-like or sparse matrix, shape: (n_samples, n_samples)
  • array-like or sparse matrix, shape=(n_samples, n_features)
  • array-like or sparse matrix, shape=(n_samples, n_features)
  • array-like or string in ['raw_values', uniform_average',
  • array-like or string in ['raw_values', uniform_average',
  • array-like with shape (n_samples, )
  • array-like with shape (n_samples, )
  • array-like,
  • array-like,
  • array-like, (n_features,)
  • array-like, (n_features,)
  • array-like, (n_samples, n_features), optional
  • array-like, (n_samples, n_features), optional
  • array-like, default=None
  • array-like, default=None
  • array-like, dtype=int32, shape = [n_class]
  • array-like, dtype=int32, shape = [n_class]
  • array-like, of length n_samples
  • array-like, of length n_samples
  • array-like, optional (default=None)
  • array-like, optional (default=None)
  • array-like, optional, default: None
  • array-like, optional, default: None
  • array-like, shape (n_samples, n_features)
  • array-like, shape (n_samples, n_features)
  • array-like, shape (M, N)
  • array-like, shape (M, N)
  • array-like, shape (M, N) or (M, )
  • array-like, shape (M, N) or (M, )
  • array-like, shape (n_samples, n_features)
  • array-like, shape (n_samples, n_features)
  • array-like, shape (n_samples,)
  • array-like, shape (n_samples,)
  • array-like, shape (n_alphas,)
  • array-like, shape (n_alphas,)
  • array-like, shape (n_classes, n_features)
  • array-like, shape (n_classes, n_features)
  • array-like, shape (n_classes,)
  • array-like, shape (n_classes,)
  • array-like, shape (n_classes,), optional
  • array-like, shape (n_classes,), optional
  • array-like, shape (n_classes,), optional (default=None)
  • array-like, shape (n_classes,), optional (default=None)
  • array-like, shape (n_cols,)
  • array-like, shape (n_cols,)
  • array-like, shape (n_column_clusters, n_columns)
  • array-like, shape (n_column_clusters, n_columns)
  • array-like, shape (n_components, ), optional
  • array-like, shape (n_components, ), optional
  • array-like, shape (n_components, n_features)
  • array-like, shape (n_components, n_features)
  • array-like, shape (n_components, n_features), optional
  • array-like, shape (n_components, n_features), optional
  • array-like, shape (n_components, n_features, n_features)
  • array-like, shape (n_components, n_features, n_features)
  • array-like, shape (n_components, n_samples)
  • array-like, shape (n_components, n_samples)
  • array-like, shape (n_components,)
  • array-like, shape (n_components,)
  • array-like, shape (n_features, )
  • array-like, shape (n_features, )
  • array-like, shape (n_features, n_features)
  • array-like, shape (n_features, n_features)
  • array-like, shape (n_features,)
  • array-like, shape (n_features,)
  • array-like, shape (n_features,), default None
  • array-like, shape (n_features,), default None
  • array-like, shape (n_features,), optional
  • array-like, shape (n_features,), optional
  • array-like, shape (n_nodes-1, 2)
  • array-like, shape (n_nodes-1, 2)
  • array-like, shape (n_params,)
  • array-like, shape (n_params,)
  • array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric == 'precomputed'
  • array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric == 'precomputed'
  • array-like, shape (n_row_clusters, n_rows)
  • array-like, shape (n_row_clusters, n_rows)
  • array-like, shape (n_rows,)
  • array-like, shape (n_rows,)
  • array-like, shape (n_samples) or (n_samples, n_features), optional
  • array-like, shape (n_samples) or (n_samples, n_features), optional
  • array-like, shape (n_samples, )
  • array-like, shape (n_samples, )
  • array-like, shape (n_samples, ...), optional
  • array-like, shape (n_samples, ...), optional
  • array-like, shape (n_samples, n_class * (n_class-1) / 2)
  • array-like, shape (n_samples, n_class * (n_class-1) / 2)
  • array-like, shape (n_samples, n_classes )
  • array-like, shape (n_samples, n_classes )
  • array-like, shape (n_samples, n_classes * (n_classes-1) / 2)
  • array-like, shape (n_samples, n_classes * (n_classes-1) / 2)
  • array-like, shape (n_samples, n_classes)
  • array-like, shape (n_samples, n_classes)
  • array-like, shape (n_samples, n_classifiers)
  • array-like, shape (n_samples, n_classifiers)
  • array-like, shape (n_samples, n_components)
  • array-like, shape (n_samples, n_components)
  • array-like, shape (n_samples, n_dim)
  • array-like, shape (n_samples, n_dim)
  • array-like, shape (n_samples, n_dimensions)
  • array-like, shape (n_samples, n_dimensions)
  • array-like, shape (n_samples, n_features)
  • array-like, shape (n_samples, n_features)
  • array-like, shape (n_samples, n_features) or (n_samples, n_samples)
  • array-like, shape (n_samples, n_features) or (n_samples, n_samples)
  • array-like, shape (n_samples, n_features), default=None
  • array-like, shape (n_samples, n_features), default=None
  • array-like, shape (n_samples, n_neighbors)
  • array-like, shape (n_samples, n_neighbors)
  • array-like, shape (n_samples, n_neighbors, n_dim)
  • array-like, shape (n_samples, n_neighbors, n_dim)
  • array-like, shape (n_samples, n_outputs)
  • array-like, shape (n_samples, n_outputs)
  • array-like, shape (n_samples, n_samples)
  • array-like, shape (n_samples, n_samples)
  • array-like, shape (n_samples,)
  • array-like, shape (n_samples,)
  • array-like, shape (n_samples,) optional
  • array-like, shape (n_samples,) optional
  • array-like, shape (n_samples,) or (n_samples, n_classes)
  • array-like, shape (n_samples,) or (n_samples, n_classes)
  • array-like, shape (n_samples,) or (n_samples, n_outputs)
  • array-like, shape (n_samples,) or (n_samples, n_outputs)
  • array-like, shape (n_samples,) or (n_samples, n_targets)
  • array-like, shape (n_samples,) or (n_samples, n_targets)
  • array-like, shape (n_samples,) or (n_samples, n_targets), optional
  • array-like, shape (n_samples,) or (n_samples, n_targets), optional
  • array-like, shape (n_samples,) or float, optional
  • array-like, shape (n_samples,) or float, optional
  • array-like, shape (n_samples,), optional
  • array-like, shape (n_samples,), optional
  • array-like, shape (n_samples,), optional (default=None)
  • array-like, shape (n_samples,), optional (default=None)
  • array-like, shape (n_samples-1, 2)
  • array-like, shape (n_samples-1, 2)
  • array-like, shape (n_samples_2, ), optional
  • array-like, shape (n_samples_2, ), optional
  • array-like, shape (n_subsample,), or None
  • array-like, shape (n_subsample,), or None
  • array-like, shape (n_targets,)
  • array-like, shape (n_targets,)
  • array-like, shape (n_test_samples,)
  • array-like, shape (n_test_samples,)
  • array-like, shape (n_train_samples,)
  • array-like, shape (n_train_samples,)
  • array-like, shape (n_values,)
  • array-like, shape (n_values,)
  • array-like, shape (number of Gaussians,)
  • array-like, shape (number of Gaussians,)
  • array-like, shape (number of nodes of all layers,)
  • array-like, shape (number of nodes of all layers,)
  • array-like, shape (rank, n_classes - 1)
  • array-like, shape (rank, n_classes - 1)
  • array-like, shape = (n_classes,)
  • array-like, shape = (n_classes,)
  • array-like, shape = (n_kernel_params,) or None
  • array-like, shape = (n_kernel_params,) or None
  • array-like, shape = (n_kernel_params,) or none
  • array-like, shape = (n_kernel_params,) or none
  • array-like, shape = (n_samples) or (n_samples, n_outputs)
  • array-like, shape = (n_samples) or (n_samples, n_outputs)
  • array-like, shape = (n_samples) or None
  • array-like, shape = (n_samples) or None
  • array-like, shape = (n_samples, [n_output_dims])
  • array-like, shape = (n_samples, [n_output_dims])
  • array-like, shape = (n_samples, n_classes)
  • array-like, shape = (n_samples, n_classes)
  • array-like, shape = (n_samples, n_components)
  • array-like, shape = (n_samples, n_components)
  • array-like, shape = (n_samples, n_features)
  • array-like, shape = (n_samples, n_features)
  • array-like, shape = (n_samples, n_samples)
  • array-like, shape = (n_samples, n_samples)
  • array-like, shape = (n_samples,)
  • array-like, shape = (n_samples,)
  • array-like, shape = (n_samples,) or (n_samples, n_outputs)
  • array-like, shape = (n_samples,) or (n_samples, n_outputs)
  • array-like, shape = (n_samples,), optional
  • array-like, shape = (n_samples,), optional
  • array-like, shape = (n_samples_X, n_features)
  • array-like, shape = (n_samples_X, n_features)
  • array-like, shape = [nSV, n_features]
  • array-like, shape = [nSV, n_features]
  • array-like, shape = [n_SV, n_features]
  • array-like, shape = [n_SV, n_features]
  • array-like, shape = [n_SV]
  • array-like, shape = [n_SV]
  • array-like, shape = [n_classes, n_features]
  • array-like, shape = [n_classes, n_features]
  • array-like, shape = [n_classes]
  • array-like, shape = [n_classes]
  • array-like, shape = [n_classes] (default=None)
  • array-like, shape = [n_classes] (default=None)
  • array-like, shape = [n_classifiers], optional (default=`None`)
  • array-like, shape = [n_classifiers], optional (default=`None`)
  • array-like, shape = [n_features, n_features]
  • array-like, shape = [n_features, n_features]
  • array-like, shape = [n_observations, n_features]
  • array-like, shape = [n_observations, n_features]
  • array-like, shape = [n_predictions]
  • array-like, shape = [n_predictions]
  • array-like, shape = [n_samples, n_classes]
  • array-like, shape = [n_samples, n_classes]
  • array-like, shape = [n_samples, n_features]
  • array-like, shape = [n_samples, n_features]
  • array-like, shape = [n_samples, n_features] or [n_features]
  • array-like, shape = [n_samples, n_features] or [n_features]
  • array-like, shape = [n_samples, n_features], optional
  • array-like, shape = [n_samples, n_features], optional
  • array-like, shape = [n_samples, n_targets]
  • array-like, shape = [n_samples, n_targets]
  • array-like, shape = [n_samples, n_transformed_features]
  • array-like, shape = [n_samples, n_transformed_features]
  • array-like, shape = [n_samples]
  • array-like, shape = [n_samples]
  • array-like, shape = [n_samples] (default=None)
  • array-like, shape = [n_samples] (default=None)
  • array-like, shape = [n_samples] or None
  • array-like, shape = [n_samples] or None
  • array-like, shape = [n_samples] or [n_samples, n_output], optional
  • array-like, shape = [n_samples] or [n_samples, n_output], optional
  • array-like, shape = [n_samples] or [n_samples, n_outputs]
  • array-like, shape = [n_samples] or [n_samples, n_outputs]
  • array-like, shape = [n_samples] or [n_samples, n_targets]
  • array-like, shape = [n_samples] or [n_samples, n_targets]
  • array-like, shape = [n_samples], (default=None)
  • array-like, shape = [n_samples], (default=None)
  • array-like, shape = [n_samples], optional
  • array-like, shape = [n_samples], optional
  • array-like, shape = [n_samples_1], optional
  • array-like, shape = [n_samples_1], optional
  • array-like, shape [n_samples, n_components]
  • array-like, shape [n_samples, n_components]
  • array-like, shape [n_samples, n_feature]
  • array-like, shape [n_samples, n_feature]
  • array-like, shape [n_samples, n_features]
  • array-like, shape [n_samples, n_features]
  • array-like, shape [n_samples, n_outputs]
  • array-like, shape [n_samples, n_outputs]
  • array-like, shape [n_samples]
  • array-like, shape [n_samples]
  • array-like, shape(n_samples,) optional
  • array-like, shape(n_samples,) optional
  • array-like, shape: (M, N) or (M, ), optional:
  • array-like, shape: (M, N) or (M, ), optional:
  • array-like, shape: (n_features,)
  • array-like, shape: (n_features,)
  • array-like, shape: (n_samples, n_clusters)
  • array-like, shape: (n_samples, n_clusters)
  • array-like, shape: (n_samples, n_samples)
  • array-like, shape: (n_samples, n_samples)
  • array-like, shape: (n_samples,)
  • array-like, shape: (n_samples,)
  • array-like, shape=(n_features,)
  • array-like, shape=(n_features,)
  • array-like, shape=(n_points, len(target_variables))
  • array-like, shape=(n_points, len(target_variables))
  • array-like, shape=(n_samples, n_feature)
  • array-like, shape=(n_samples, n_feature)
  • array-like, shape=(n_samples, n_features)
  • array-like, shape=(n_samples, n_features)
  • array-like, shape=(n_samples,)
  • array-like, shape=(n_samples,)
  • array-like, shape=(n_samples,), optional, default: None
  • array-like, shape=(n_samples,), optional, default: None
  • array-like, shape=[n_outputs] or 'random', optional
  • array-like, shape=[n_outputs] or 'random', optional
  • array-like, shape=[n_samples, n_clusters] or [n_clusters,]
  • array-like, shape=[n_samples, n_clusters] or [n_clusters,]
  • array-like, shape=[n_samples, n_features]
  • array-like, shape=[n_samples, n_features]
  • array-like, shape=[n_seeds, n_features] or None
  • array-like, shape=[n_seeds, n_features] or None
  • array-like, size (n_classes,), optional (default=None)
  • array-like, size (n_classes,), optional (default=None)
  • array-like, size=[n_classes,], optional (default=None)
  • array-like, size=[n_classes,], optional (default=None)
  • array-like, with shape (n_samples,), optional
  • array-like, with shape (n_samples,), optional
  • array_like or sparse (CSR) matrix, shape (n_samples, n_features)
  • array_like or sparse (CSR) matrix, shape (n_samples, n_features)
  • array_like or sparse matrix, shape (n_samples, n_features)
  • array_like or sparse matrix, shape (n_samples, n_features)
  • array_like or sparse matrix, shape = [n_samples, n_features]
  • array_like or sparse matrix, shape = [n_samples, n_features]
  • array_like, optional (if eval_MSE == True)
  • array_like, optional (if eval_MSE == True)
  • array_like, shape (n, n_features)
  • array_like, shape (n, n_features)
  • array_like, shape (n_components, n_features)
  • array_like, shape (n_components, n_features)
  • array_like, shape (n_features,)
  • array_like, shape (n_features,)
  • array_like, shape (n_samples, ) or (n_samples, n_targets)
  • array_like, shape (n_samples, ) or (n_samples, n_targets)
  • array_like, shape (n_samples, n_components)
  • array_like, shape (n_samples, n_components)
  • array_like, shape (n_samples, n_features)
  • array_like, shape (n_samples, n_features)
  • array_like, shape (n_samples,)
  • array_like, shape (n_samples,)
  • array_like, shape = [n_samples, n_estimators, n_classes]
  • array_like, shape = [n_samples, n_estimators, n_classes]
  • array_like, shape = [n_samples, n_estimators]
  • array_like, shape = [n_samples, n_estimators]
  • array_like, shape = [n_samples, n_features]
  • array_like, shape = [n_samples, n_features]
  • array_like, shape = [n_samples,]
  • array_like, shape = [n_samples,]
  • array_like, shape = [n_samples]
  • array_like, shape = [n_samples]
  • arrays with shape (n_samples * (n_samples - 1) / 2, 2)
  • arrays with shape (n_samples * (n_samples - 1) / 2, 2)
  • attribute name(s) given as string or a list/tuple of strings
  • attribute name(s) given as string or a list/tuple of strings
  • bool (default True)
  • bool (default True)
  • bool (default=False)
  • bool (default=False)
  • bool (optional)
  • bool (optional)
  • bool (optional, default=False)
  • bool (optional, default=False)
  • bool array of shape [n_samples]
  • bool array of shape [n_samples]
  • bool or 'auto' (optional)
  • bool or 'auto' (optional)
  • bool or 'auto', optional (default='auto')
  • bool or 'auto', optional (default='auto')
  • bool or 'auto', optional, default "auto"
  • bool or 'auto', optional, default "auto"
  • bool or int, optional
  • bool or int, optional
  • bool,
  • bool,
  • bool, (default=True)
  • bool, (default=True)
  • bool, False by default
  • bool, False by default
  • bool, default False
  • bool, default False
  • bool, default True
  • bool, default True
  • bool, default to False.
  • bool, default to False.
  • bool, default: False
  • bool, default: False
  • bool, default: True
  • bool, default: True
  • bool, default=False
  • bool, default=False
  • bool, default=False.
  • bool, default=False.
  • bool, default=True
  • bool, default=True
  • bool, optional
  • bool, optional
  • bool, optional (default False)
  • bool, optional (default False)
  • bool, optional (default: False)
  • bool, optional (default: False)
  • bool, optional (default: None)
  • bool, optional (default: None)
  • bool, optional (default: True)
  • bool, optional (default: True)
  • bool, optional (default=False)
  • bool, optional (default=False)
  • bool, optional (default=None)
  • bool, optional (default=None)
  • bool, optional (default=True)
  • bool, optional (default=True)
  • bool, optional default False
  • bool, optional default False
  • bool, optional default=False
  • bool, optional default=False
  • bool, optional default=True
  • bool, optional default=True
  • bool, optional, default False
  • bool, optional, default False
  • bool, optional, default True
  • bool, optional, default True
  • bool, optional, default: False
  • bool, optional, default: False
  • bool, optional, default=False
  • bool, optional, default=False
  • bool, optional, default=True
  • bool, optional, default=True
  • bool, optional. Default: False
  • bool, optional. Default: False
  • boolean (default False)
  • boolean (default False)
  • boolean (default: False)
  • boolean (default: False)
  • boolean (default: False),
  • boolean (default: False),
  • boolean (default=False)
  • boolean (default=False)
  • boolean (default=True)
  • boolean (default=True)
  • boolean (optional), default True
  • boolean (optional), default True
  • boolean optional
  • boolean optional
  • boolean or "auto", optional
  • boolean or "auto", optional
  • boolean or "auto", optional, default "auto"
  • boolean or "auto", optional, default "auto"
  • boolean or string, optional, default: True
  • boolean or string, optional, default: True
  • boolean,
  • boolean,
  • boolean, (True by default)
  • boolean, (True by default)
  • boolean, (default True)
  • boolean, (default True)
  • boolean, (default=True)
  • boolean, (default=True)
  • boolean, True by default
  • boolean, True by default
  • boolean, default = False
  • boolean, default = False
  • boolean, default False
  • boolean, default False
  • boolean, default True
  • boolean, default True
  • boolean, default: False
  • boolean, default: False
  • boolean, default: True
  • boolean, default: True
  • boolean, default='warn'
  • boolean, default='warn'
  • boolean, default=False
  • boolean, default=False
  • boolean, default=False.
  • boolean, default=False.
  • boolean, default=True
  • boolean, default=True
  • boolean, defaults to False
  • boolean, defaults to False
  • boolean, optional
  • boolean, optional
  • boolean, optional (default = False)
  • boolean, optional (default = False)
  • boolean, optional (default = True)
  • boolean, optional (default = True)
  • boolean, optional (default: False)
  • boolean, optional (default: False)
  • boolean, optional (default='deprecated')
  • boolean, optional (default='deprecated')
  • boolean, optional (default=False)
  • boolean, optional (default=False)
  • boolean, optional (default=True)
  • boolean, optional (default=True)
  • boolean, optional, (default=False)
  • boolean, optional, (default=False)
  • boolean, optional, (default=True)
  • boolean, optional, (default=True)
  • boolean, optional, default False
  • boolean, optional, default False
  • boolean, optional, default True
  • boolean, optional, default True
  • boolean, optional, default True.
  • boolean, optional, default True.
  • boolean, optional, default is True
  • boolean, optional, default is True
  • boolean, optional, default: False
  • boolean, optional, default: False
  • boolean, optional, default: True
  • boolean, optional, default: True
  • boolean, optional, default=True
  • boolean, optional, default=True
  • boolean, optional.
  • boolean, optional.
  • boolean, optional. Defaults to True.
  • boolean, optional. Defaults to True.
  • boolean, or string default=True
  • boolean, or string default=True
  • boolean, or string, default=True
  • boolean, or string, default=True
  • bunch object, a dictionary with attribute access
  • bunch object, a dictionary with attribute access
  • callable
  • callable
  • callable or None
  • callable or None
  • callable or None (default)
  • callable or None (default)
  • callable or None, optional (default: None)
  • callable or None, optional (default: None)
  • callable or None, optional, default: None
  • callable or None, optional, default: None
  • callable or None.
  • callable or None.
  • callable,
  • callable,
  • callable, default empirical_covariance
  • callable, default empirical_covariance
  • callable, default np.mean
  • callable, default np.mean
  • callable, default='deprecated'
  • callable, default='deprecated'
  • callable, optional
  • callable, optional
  • callable, optional default=None
  • callable, optional default=None
  • callable, returns shape [n_classes]
  • callable, returns shape [n_classes]
  • callable, {all, any}, default all
  • callable, {all, any}, default all
  • concrete LossFunction
  • concrete LossFunction
  • csr sparse matrix, shape (n_samples, n_sample)
  • csr sparse matrix, shape (n_samples, n_sample)
  • csr sparse matrix, shape (n_samples, n_samples)
  • csr sparse matrix, shape (n_samples, n_samples)
  • decision tree regressor or classifier
  • decision tree regressor or classifier
  • dense matrix, shape=(n_topics, n_features)
  • dense matrix, shape=(n_topics, n_features)
  • dict of float arrays of shape=(n_splits,)
  • dict of float arrays of shape=(n_splits,)
  • dict of numpy (masked) ndarrays
  • dict of numpy (masked) ndarrays
  • dict of scorer name -> float, optional
  • dict of scorer name -> float, optional
  • dict or 'balanced', default: None
  • dict or 'balanced', default: None
  • dict or 'balanced', optional
  • dict or 'balanced', optional
  • dict or None
  • dict or None
  • dict or None, optional
  • dict or None, optional
  • dict, 'balanced' or None
  • dict, 'balanced' or None
  • dict, default: None
  • dict, default: None
  • dict, keys=str, values=ndarray
  • dict, keys=str, values=ndarray
  • dict, list of dicts, "balanced" or None, default=None
  • dict, list of dicts, "balanced" or None, default=None
  • dict, list of dicts, "balanced",
  • dict, list of dicts, "balanced",
  • dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None)
  • dict, list of dicts, "balanced", "balanced_subsample" or None, optional (default=None)
  • dict, list of dicts, "balanced", or None, optional
  • dict, list of dicts, "balanced", or None, optional
  • dict, optional
  • dict, optional
  • dict, optional (default = None)
  • dict, optional (default = None)
  • dict, optional (default=None)
  • dict, optional (default=None)
  • dict, {class_label: weight} or "balanced" or None, optional
  • dict, {class_label: weight} or "balanced" or None, optional
  • dict-like object with the following attributes:
  • dict-like object with the following attributes:
  • double or None (default=None)
  • double or None (default=None)
  • double, default: 0.
  • double, default: 0.
  • double, optional
  • double, optional
  • double, optional, default 0.001
  • double, optional, default 0.001
  • double, optional, default 0.5
  • double, optional, default 0.5
  • dtype, optional, default int
  • dtype, optional, default int
  • estimator
  • estimator
  • estimator instance.
  • estimator instance.
  • estimator object
  • estimator object
  • estimator object implementing 'fit'
  • estimator object implementing 'fit'
  • estimator object implementing 'fit' and 'predict'
  • estimator object implementing 'fit' and 'predict'
  • estimator object, or list, tuple or set of objects
  • estimator object, or list, tuple or set of objects
  • estimator object.
  • estimator object.
  • estimator supporting get/set_params
  • estimator supporting get/set_params
  • exception or tuple of exception
  • exception or tuple of exception
  • figure
  • figure
  • file object or string, optional (default='tree.dot')
  • file object or string, optional (default='tree.dot')
  • float (default 0.1), int, or None
  • float (default 0.1), int, or None
  • float (default 0.2), int, or None
  • float (default 0.2), int, or None
  • float (default: 0.5)
  • float (default: 0.5)
  • float (default=0.9)
  • float (default=0.9)
  • float (if average is not None) or array of float, , shape = [n_unique_labels]
  • float (if average is not None) or array of float, , shape = [n_unique_labels]
  • float (if average is not None) or array of float, shape = [n_unique_labels]
  • float (if average is not None) or array of float, shape = [n_unique_labels]
  • float (the lower the better)
  • float (the lower the better)
  • float > 0, default: 1.0
  • float > 0, default: 1.0
  • float >= 0, default: 1.0
  • float >= 0, default: 1.0
  • float >= 0, optional (default .0)
  • float >= 0, optional (default .0)
  • float array with shape (n_features,)
  • float array with shape (n_features,)
  • float array with shape (n_samples,)
  • float array with shape (n_samples,)
  • float array, shape (k, n_features)
  • float array, shape (k, n_features)
  • float array, shape (n_samples,)
  • float array, shape (n_samples,)
  • float between 0 and 1, optional (default=0.1)
  • float between 0 and 1, optional (default=0.1)
  • float between 0 and 1, optional (default=0.9)
  • float between 0 and 1, optional (default=0.9)
  • float between 0 and 1, optional (default=0.95)
  • float between 0 and 1, optional (default=0.95)
  • float between 0.0 and 1.0, optional (default=0.5)
  • float between 0.0 and 1.0, optional (default=0.5)
  • float in (0., 0.5), optional (default=0.1)
  • float in (0., 0.5), optional (default=0.1)
  • float in (0., 1.), optional (default=None)
  • float in (0., 1.), optional (default=None)
  • float in [0.0, 1.0]
  • float in [0.0, 1.0]
  • float in range 0.0 - 1.0
  • float in range 0.0 - 1.0
  • float in range [0, 1], optional
  • float in range [0, 1], optional
  • float in range [0.0, 1.0] or int, default=1
  • float in range [0.0, 1.0] or int, default=1
  • float in range [0.0, 1.0] or int, default=1.0
  • float in range [0.0, 1.0] or int, default=1.0
  • float in range ]0, 1] or 'auto', optional (default='auto')
  • float in range ]0, 1] or 'auto', optional (default='auto')
  • float in range ]0, 1], optional (default='auto')
  • float in range ]0, 1], optional (default='auto')
  • float ndarray with shape (k, n_features)
  • float ndarray with shape (k, n_features)
  • float or None
  • float or None
  • float or None, optional
  • float or None, optional
  • float or None, optional (default=0.0)
  • float or None, optional (default=0.0)
  • float or array of float, shape = [n_unique_labels]
  • float or array of float, shape = [n_unique_labels]
  • float or array of shape [n_classes]
  • float or array of shape [n_classes]
  • float or array of shape [n_outputs]
  • float or array of shape [n_outputs]
  • float or array, shape (n_targets,)
  • float or array, shape (n_targets,)
  • float or array, shape = [n_targets]
  • float or array, shape = [n_targets]
  • float or array-like of shape [n_reg_parameter], optional, default=1
  • float or array-like of shape [n_reg_parameter], optional, default=1
  • float or array-like of shape [n_samples]
  • float or array-like of shape [n_samples]
  • float or array-like, optional (default: 1e-10)
  • float or array-like, optional (default: 1e-10)
  • float or array-like, shape (n_samples, n_features)
  • float or array-like, shape (n_samples, n_features)
  • float or dense array-like, shape (n_components, n_features)
  • float or dense array-like, shape (n_components, n_features)
  • float or dense array-like, shape (n_samples, n_components)
  • float or dense array-like, shape (n_samples, n_components)
  • float or int depending on the feature selection mode
  • float or int depending on the feature selection mode
  • float or int,
  • float or int,
  • float or numpy array of float in ]0,1[, optional (default=0.1)
  • float or numpy array of float in ]0,1[, optional (default=0.1)
  • float or numpy array of shape (n_samples,)
  • float or numpy array of shape (n_samples,)
  • float or numpy array of shape [n_samples]
  • float or numpy array of shape [n_samples]
  • float or sequence of floats, optional (default=1.0)
  • float or sequence of floats, optional (default=1.0)
  • float or string, default 'frobenius'
  • float or string, default 'frobenius'
  • float | None, optional.
  • float | None, optional.
  • float | array, shape (n_targets, n_features)
  • float | array, shape (n_targets, n_features)
  • float | array, shape (n_targets,)
  • float | array, shape (n_targets,)
  • float | array, shape = (n_targets,)
  • float | array, shape = (n_targets,)
  • float,
  • float,
  • float, 'aic', or 'bic', optional
  • float, 'aic', or 'bic', optional
  • float, 0 < support_fraction < 1
  • float, 0 < support_fraction < 1
  • float, 0 <= shrinkage <= 1
  • float, 0 <= shrinkage <= 1
  • float, 0 <= shrinkage <= 1, default 0.1
  • float, 0 <= shrinkage <= 1, default 0.1
  • float, 1. by default
  • float, 1. by default
  • float, 1.0 by default
  • float, 1.0 by default
  • float, array of shape [n_features] or None, optional (default=0.0)
  • float, array of shape [n_features] or None, optional (default=0.0)
  • float, array of shape [n_features] or None, optional (default=1.0)
  • float, array of shape [n_features] or None, optional (default=1.0)
  • float, default 0.0001
  • float, default 0.0001
  • float, default 0.3
  • float, default 0.3
  • float, default 0.5
  • float, default 0.5
  • float, default 0.9
  • float, default 0.9
  • float, default 1
  • float, default 1
  • float, default 1.
  • float, default 1.
  • float, default 1e-3
  • float, default 1e-3
  • float, default 1e-5
  • float, default 1e-5
  • float, default None
  • float, default None
  • float, default: 0.0
  • float, default: 0.0
  • float, default: 0.01
  • float, default: 0.01
  • float, default: 1
  • float, default: 1
  • float, default: 1.0
  • float, default: 1.0
  • float, default: 1e-4
  • float, default: 1e-4
  • float, default=0
  • float, default=0
  • float, default=0.1
  • float, default=0.1
  • float, default=1
  • float, default=1
  • float, default=1.
  • float, default=1.
  • float, default=1/n_features
  • float, default=1/n_features
  • float, default=3
  • float, default=3
  • float, default=None
  • float, default=None
  • float, defaults to 1e-3.
  • float, defaults to 1e-3.
  • float, defaults to 1e-6.
  • float, defaults to 1e-6.
  • float, greater than 1.0, default 1.35
  • float, greater than 1.0, default 1.35
  • float, int, None, default=0.1
  • float, int, None, default=0.1
  • float, int, None, optional
  • float, int, None, optional
  • float, int, or None (default is None)
  • float, int, or None (default is None)
  • float, int, or None, default None
  • float, int, or None, default None
  • float, int, or None, default is None
  • float, int, or None, default is None
  • float, int, or None, default=None
  • float, int, or None, default=None
  • float, optinal (default = 1.0)
  • float, optinal (default = 1.0)
  • float, optional
  • float, optional
  • float, optional (0.0 by default)
  • float, optional (0.0 by default)
  • float, optional (default = 0.9)
  • float, optional (default = 0.9)
  • float, optional (default = 1.0)
  • float, optional (default = 1.0)
  • float, optional (default = None)
  • float, optional (default = None)
  • float, optional (default: 0.01)
  • float, optional (default: 0.01)
  • float, optional (default: 12.0)
  • float, optional (default: 12.0)
  • float, optional (default: 1e-7)
  • float, optional (default: 1e-7)
  • float, optional (default: 200.0)
  • float, optional (default: 200.0)
  • float, optional (default: 30)
  • float, optional (default: 30)
  • float, optional (default='auto')
  • float, optional (default='auto')
  • float, optional (default=0.)
  • float, optional (default=0.)
  • float, optional (default=0.0)
  • float, optional (default=0.0)
  • float, optional (default=0.01)
  • float, optional (default=0.01)
  • float, optional (default=0.1)
  • float, optional (default=0.1)
  • float, optional (default=0.5)
  • float, optional (default=0.5)
  • float, optional (default=0.7)
  • float, optional (default=0.7)
  • float, optional (default=1)
  • float, optional (default=1)
  • float, optional (default=1.)
  • float, optional (default=1.)
  • float, optional (default=1.0)
  • float, optional (default=1.0)
  • float, optional (default=10.)
  • float, optional (default=10.)
  • float, optional (default=1e-1)
  • float, optional (default=1e-1)
  • float, optional (default=1e-3)
  • float, optional (default=1e-3)
  • float, optional (default=1e-4)
  • float, optional (default=1e-4)
  • float, optional (default=1e-9)
  • float, optional (default=1e-9)
  • float, optional (default=None)
  • float, optional (default=None)
  • float, optional, (default 1.0e-4)
  • float, optional, (default 1.0e-4)
  • float, optional, default 0.0001
  • float, optional, default 0.0001
  • float, optional, default 0.1
  • float, optional, default 0.1
  • float, optional, default 0.5
  • float, optional, default 0.5
  • float, optional, default 0.9
  • float, optional, default 0.9
  • float, optional, default 0.999
  • float, optional, default 0.999
  • float, optional, default 1.0e-4
  • float, optional, default 1.0e-4
  • float, optional, default 1.e-3
  • float, optional, default 1.e-3
  • float, optional, default 1e-4
  • float, optional, default 1e-4
  • float, optional, default 1e-8
  • float, optional, default 1e-8
  • float, optional, default: 0.5
  • float, optional, default: 0.5
  • float, optional, default: 1e-3
  • float, optional, default: 1e-3
  • float, optional, default=0.0
  • float, optional, default=0.0
  • float, optional, default=0.25
  • float, optional, default=0.25
  • float, optional, default=0.5
  • float, optional, default=0.5
  • float, optional, default=0.75
  • float, optional, default=0.75
  • float, optional, default=1e-3
  • float, optional, default=1e-3
  • float, string in {'frobenius', 'kullback-leibler', 'itakura-saito'}
  • float, string in {'frobenius', 'kullback-leibler', 'itakura-saito'}
  • float, within (0.0, 1.0), optional (default: 0.8)
  • float, within (0.0, 1.0), optional (default: 0.8)
  • float.
  • float.
  • float64 array-like or CSR sparse matrix, shape (n_samples, n_features)
  • float64 array-like or CSR sparse matrix, shape (n_samples, n_features)
  • function
  • function
  • function or callable
  • function or callable
  • function, optional
  • function, optional
  • generator of array of shape = [n_samples]
  • generator of array of shape = [n_samples]
  • generator of array, shape = [n_samples, k]
  • generator of array, shape = [n_samples, k]
  • generator of array, shape = [n_samples]
  • generator of array, shape = [n_samples]
  • instance
  • instance
  • instance BaseEstimator
  • instance BaseEstimator
  • int (0 by default)
  • int (0 by default)
  • int (>= 1) or float ([0, 1]), optional
  • int (>= 1) or float ([0, 1]), optional
  • int (default 10)
  • int (default 10)
  • int (default 5)
  • int (default 5)
  • int (default = 10)
  • int (default = 10)
  • int (default = 4)
  • int (default = 4)
  • int (default = 5)
  • int (default = 5)
  • int (default = 50)
  • int (default = 50)
  • int (default is 10)
  • int (default is 10)
  • int (default: 0)
  • int (default: 0)
  • int (default: 1)
  • int (default: 1)
  • int (default=1)
  • int (default=1)
  • int (default=100)
  • int (default=100)
  • int (either 0 or 1)
  • int (either 0 or 1)
  • int (if average is not None) or array of int, shape = [n_unique_labels]
  • int (if average is not None) or array of int, shape = [n_unique_labels]
  • int (optional)
  • int (optional)
  • int (optional, default:0)
  • int (optional, default:0)
  • int (read-only)
  • int (read-only)
  • int < p
  • int < p
  • int >= 0, or 'auto', (default 'auto')
  • int >= 0, or 'auto', (default 'auto')
  • int array of shape(n)
  • int array of shape(n)
  • int array, shape = (n_samples,)
  • int array, shape = (n_samples,)
  • int array, shape = [n_samples]
  • int array, shape = [n_samples]
  • int or "all", optional, default=10
  • int or "all", optional, default=10
  • int or 'auto' (default is 'auto')
  • int or 'auto' (default is 'auto')
  • int or 'auto', optional (default = 'auto')
  • int or 'auto', optional (default = 'auto')
  • int or None
  • int or None
  • int or None (default=None)
  • int or None (default=None)
  • int or None, (default=None)
  • int or None, (default=None)
  • int or None, default=None
  • int or None, default=None
  • int or None, optional (default=None)
  • int or None, optional (default=None)
  • int or array of shape [n_centers, n_features], optional
  • int or array of shape [n_centers, n_features], optional
  • int or float or array of shape = [n_outputs]
  • int or float or array of shape = [n_outputs]
  • int or float, optional (default="auto")
  • int or float, optional (default="auto")
  • int or float, optional (default=1)
  • int or float, optional (default=1)
  • int or float, optional (default=1.0)
  • int or float, optional (default=1.0)
  • int or float, optional (default=None)
  • int or float, optional (default=None)
  • int or numpy array of int greater than 0,
  • int or numpy array of int greater than 0,
  • int or numpy array of int,
  • int or numpy array of int,
  • int or str or array of shape = [n_outputs]
  • int or str or array of shape = [n_outputs]
  • int or str, default=None
  • int or str, default=None
  • int | None
  • int | None
  • int | array-like, shape (n_cs,)
  • int | array-like, shape (n_cs,)
  • int | array-like, shape (n_targets,)
  • int | array-like, shape (n_targets,)
  • int,
  • int,
  • int, (default 2)
  • int, (default 2)
  • int, (default 2).
  • int, (default 2).
  • int, (default=0)
  • int, (default=0)
  • int, (default=1000)
  • int, (default=1000)
  • int, 0.1 * n_features by default
  • int, 0.1 * n_features by default
  • int, 1000 by default
  • int, 1000 by default
  • int, > n_samples / 2
  • int, > n_samples / 2
  • int, None
  • int, None
  • int, None by default
  • int, None by default
  • int, RandomState instance or None, optional (default None)
  • int, RandomState instance or None, optional (default None)
  • int, RandomState instance or None, optional (default: None)
  • int, RandomState instance or None, optional (default: None)
  • int, RandomState instance or None, optional (default=0)
  • int, RandomState instance or None, optional (default=0)
  • int, RandomState instance or None, optional (default=None)
  • int, RandomState instance or None, optional (default=None)
  • int, RandomState instance or None, optional, default = None
  • int, RandomState instance or None, optional, default = None
  • int, RandomState instance or None, optional, default None
  • int, RandomState instance or None, optional, default None
  • int, RandomState instance or None, optional, default: None
  • int, RandomState instance or None, optional, default: None
  • int, RandomState instance or None, optional, default=None
  • int, RandomState instance or None, optional, default=None
  • int, RandomState instance or None. default to None
  • int, RandomState instance or None. default to None
  • int, [(n + p + 1)/2] < n_support < n
  • int, [(n + p + 1)/2] < n_support < n
  • int, 0.1 * n_features by default
  • int, 0.1 * n_features by default
  • int, cross-validation generator or an iterable, optional
  • int, cross-validation generator or an iterable, optional
  • int, cross-validation generator or an iterable, optional (default=None)
  • int, cross-validation generator or an iterable, optional (default=None)
  • int, default 0
  • int, default 0
  • int, default 1
  • int, default 1
  • int, default 10
  • int, default 10
  • int, default 100
  • int, default 100
  • int, default 2
  • int, default 2
  • int, default 3
  • int, default 3
  • int, default 300
  • int, default 300
  • int, default 50
  • int, default 50
  • int, default = 2
  • int, default = 2
  • int, default None
  • int, default None
  • int, default to 0.
  • int, default to 0.
  • int, default to 10.
  • int, default to 10.
  • int, default: 0
  • int, default: 0
  • int, default: 1
  • int, default: 1
  • int, default: 10
  • int, default: 10
  • int, default: 100
  • int, default: 100
  • int, default: 300
  • int, default: 300
  • int, default=0
  • int, default=0
  • int, default=1
  • int, default=1
  • int, default=1.0
  • int, default=1.0
  • int, default=10
  • int, default=10
  • int, default=100
  • int, default=100
  • int, default=1000
  • int, default=1000
  • int, default=2
  • int, default=2
  • int, default=3
  • int, default=3
  • int, default=5
  • int, default=5
  • int, default=5e8
  • int, default=5e8
  • int, default=None
  • int, default=None
  • int, defaults to 1.
  • int, defaults to 1.
  • int, defaults to 100.
  • int, defaults to 100.
  • int, float, optional (default=1)
  • int, float, optional (default=1)
  • int, float, optional (default=2)
  • int, float, optional (default=2)
  • int, float, string or None, optional (default="auto")
  • int, float, string or None, optional (default="auto")
  • int, float, string or None, optional (default=None)
  • int, float, string or None, optional (default=None)
  • int, instance of sklearn.cluster model, default 3
  • int, instance of sklearn.cluster model, default 3
  • int, nb_iter > 0
  • int, nb_iter > 0
  • int, nb_trials > 0 or 2-tuple
  • int, nb_trials > 0 or 2-tuple
  • int, optional
  • int, optional
  • int, optional (default 5)
  • int, optional (default 5)
  • int, optional (default = 1)
  • int, optional (default = 1)
  • int, optional (default = 30)
  • int, optional (default = 30)
  • int, optional (default = 5)
  • int, optional (default = 5)
  • int, optional (default = None)
  • int, optional (default = None)
  • int, optional (default: 0)
  • int, optional (default: 0)
  • int, optional (default: 100)
  • int, optional (default: 100)
  • int, optional (default: 1000)
  • int, optional (default: 1000)
  • int, optional (default: 2)
  • int, optional (default: 2)
  • int, optional (default: 300)
  • int, optional (default: 300)
  • int, optional (default: 5)
  • int, optional (default: 5)
  • int, optional (default=-1)
  • int, optional (default=-1)
  • int, optional (default=0)
  • int, optional (default=0)
  • int, optional (default=1)
  • int, optional (default=1)
  • int, optional (default=10)
  • int, optional (default=10)
  • int, optional (default=100)
  • int, optional (default=100)
  • int, optional (default=1000)
  • int, optional (default=1000)
  • int, optional (default=12000)
  • int, optional (default=12000)
  • int, optional (default=128)
  • int, optional (default=128)
  • int, optional (default=1e5)
  • int, optional (default=1e5)
  • int, optional (default=1e6)
  • int, optional (default=1e6)
  • int, optional (default=2)
  • int, optional (default=2)
  • int, optional (default=20)
  • int, optional (default=20)
  • int, optional (default=3)
  • int, optional (default=3)
  • int, optional (default=30)
  • int, optional (default=30)
  • int, optional (default=5)
  • int, optional (default=5)
  • int, optional (default=50)
  • int, optional (default=50)
  • int, optional (default=None)
  • int, optional (default=None)
  • int, optional, default 'auto'
  • int, optional, default 'auto'
  • int, optional, default 1
  • int, optional, default 1
  • int, optional, default 10
  • int, optional, default 10
  • int, optional, default 1e4
  • int, optional, default 1e4
  • int, optional, default 200
  • int, optional, default 200
  • int, optional, default 300
  • int, optional, default 300
  • int, optional, default None
  • int, optional, default None
  • int, optional, default: 0
  • int, optional, default: 0
  • int, optional, default: 1
  • int, optional, default: 1
  • int, optional, default: 10
  • int, optional, default: 10
  • int, optional, default: 100
  • int, optional, default: 100
  • int, optional, default: 15
  • int, optional, default: 15
  • int, optional, default: 2
  • int, optional, default: 2
  • int, optional, default: 200
  • int, optional, default: 200
  • int, optional, default: 3 * batch_size
  • int, optional, default: 3 * batch_size
  • int, optional, default: 30
  • int, optional, default: 30
  • int, optional, default: 300
  • int, optional, default: 300
  • int, optional, default: 4
  • int, optional, default: 4
  • int, optional, default: 8
  • int, optional, default: 8
  • int, optional, default: None
  • int, optional, default: None
  • int, optional, default=1
  • int, optional, default=1
  • int, optional, default=10
  • int, optional, default=10
  • int, optional, default=100
  • int, optional, default=100
  • int, optional, default=200
  • int, optional, default=200
  • int, or string, optional
  • int, or string, optional
  • integer ndarray with shape (n_samples,)
  • integer ndarray with shape (n_samples,)
  • integer or "NaN", optional (default="NaN")
  • integer or "NaN", optional (default="NaN")
  • integer or None, optional (default=None)
  • integer or None, optional (default=None)
  • integer or cross-validation generator
  • integer or cross-validation generator
  • integer or float, optional default is None
  • integer or float, optional default is None
  • integer or iterable (n_row_clusters, n_column_clusters)
  • integer or iterable (n_row_clusters, n_column_clusters)
  • integer or numpy.RandomState, optional
  • integer or numpy.RandomState, optional
  • integer or tuple (n_row_clusters, n_column_clusters)
  • integer or tuple (n_row_clusters, n_column_clusters)
  • integer or tuple of length arr.ndim
  • integer or tuple of length arr.ndim
  • integer, between 0 and 10, optional (default=10)
  • integer, between 0 and 10, optional (default=10)
  • integer, cross-validation generator, iterable or "prefit", optional
  • integer, cross-validation generator, iterable or "prefit", optional
  • integer, default 100
  • integer, default 100
  • integer, default: 0
  • integer, default: 0
  • integer, default: 200
  • integer, default: 200
  • integer, default=(2 ** 20)
  • integer, default=(2 ** 20)
  • integer, optional
  • integer, optional
  • integer, optional (default = 2)
  • integer, optional (default = 2)
  • integer, optional (default=0)
  • integer, optional (default=0)
  • integer, optional (default=1)
  • integer, optional (default=1)
  • integer, optional (default=10)
  • integer, optional (default=10)
  • integer, optional (default=2)
  • integer, optional (default=2)
  • integer, optional (default=3)
  • integer, optional (default=3)
  • integer, optional (default=5)
  • integer, optional (default=5)
  • integer, optional (default=50)
  • integer, optional (default=50)
  • integer, optional, default -1
  • integer, optional, default -1
  • integer, optional, default 0
  • integer, optional, default 0
  • integer, optional, default 1
  • integer, optional, default 1
  • integer, optional, default 8
  • integer, optional, default 8
  • integer, optional, default: 3
  • integer, optional, default: 3
  • integer, optional, default: 6
  • integer, optional, default: 6
  • integer, or list positive float, optional
  • integer, or list positive float, optional
  • is not used: placeholder to allow for usage in a Pipeline.
  • is not used: placeholder to allow for usage in a Pipeline.
  • iterable (n_rows, n_cols)
  • iterable (n_rows, n_cols)
  • iterable of floating-point values
  • iterable of floating-point values
  • iterable of floating-point values, optional, default: None
  • iterable of floating-point values, optional, default: None
  • iterable of iterables
  • iterable of iterables
  • iterable or None, default None
  • iterable or None, default None
  • iterable or array-like, depending on transformers
  • iterable or array-like, depending on transformers
  • iterable over iterable over raw features, length = n_samples
  • iterable over iterable over raw features, length = n_samples
  • iterable over raw text documents, length = n_samples
  • iterable over raw text documents, length = n_samples
  • iterable, default=None
  • iterable, default=None
  • joblib.Parallel
  • joblib.Parallel
  • joblib.Parallel (optional)
  • joblib.Parallel (optional)
  • list (len() equal to cv or 1 if cv == "prefit")
  • list (len() equal to cv or 1 if cv == "prefit")
  • list of (objective, dual_gap) pairs
  • list of (objective, dual_gap) pairs
  • list of DecisionTreeClassifier
  • list of DecisionTreeClassifier
  • list of DecisionTreeRegressor
  • list of DecisionTreeRegressor
  • list of GaussianRandomProjectionHash objects
  • list of GaussianRandomProjectionHash objects
  • list of n_output estimators
  • list of n_output estimators
  • list of int(n_classes * code_size) estimators
  • list of int(n_classes * code_size) estimators
  • list of n_classes * (n_classes - 1) / 2 estimators
  • list of n_classes * (n_classes - 1) / 2 estimators
  • list of n_classes estimators
  • list of n_classes estimators
  • list of array-like, shape = [n_features, n_features]
  • list of array-like, shape = [n_features, n_features]
  • list of arrays
  • list of arrays
  • list of arrays, len = n_samples
  • list of arrays, len = n_samples
  • list of classifiers
  • list of classifiers
  • list of dict_type objects, length = n_samples
  • list of dict_type objects, length = n_samples
  • list of estimators
  • list of estimators
  • list of floating-point values
  • list of floating-point values
  • list of floats or None (default=None)
  • list of floats or None (default=None)
  • list of indices
  • list of indices
  • list of integers of size n_outputs
  • list of integers of size n_outputs
  • list of numpy arrays, shape (n_outputs)
  • list of numpy arrays, shape (n_outputs)
  • list of size n_outputs of arrays of size (n_classes,)
  • list of size n_outputs of arrays of size (n_classes,)
  • list of string, length n_features, optional
  • list of string, length n_features, optional
  • list of string, length n_output_features
  • list of string, length n_output_features
  • list of strings, bool or None, optional (default=None)
  • list of strings, bool or None, optional (default=None)
  • list of strings, optional (default=None)
  • list of strings, optional (default=None)
  • list, [n_iterations]
  • list, [n_iterations]
  • list, default None
  • list, default None
  • list, length = 2 * len(arrays),
  • list, length = 2 * len(arrays),
  • list, length = len(grads)
  • list, length = len(grads)
  • list, length = len(params)
  • list, length = len(params)
  • list, length = n_alphas | list of n_targets such lists
  • list, length = n_alphas | list of n_targets such lists
  • list, length = n_layers - 1
  • list, length = n_layers - 1
  • list, length n
  • list, length n
  • list, length n_layers - 1
  • list, length n_layers - 1
  • list, length=2 * len(arrays)
  • list, length=2 * len(arrays)
  • list, optional
  • list, optional
  • list-like
  • list-like
  • mapping of string to any
  • mapping of string to any
  • mapping of string to any, default=None
  • mapping of string to any, default=None
  • mapping of string to any, optional
  • mapping of string to any, optional
  • maximum number of iterations for 'arpack' method
  • maximum number of iterations for 'arpack' method
  • ndarray (n_samples, )
  • ndarray (n_samples, )
  • ndarray (n_samples, n_features)
  • ndarray (n_samples, n_features)
  • ndarray of DecisionTreeRegressor, shape = [n_estimators, 1]
  • ndarray of DecisionTreeRegressor, shape = [n_estimators, 1]
  • ndarray of DecisionTreeRegressor, shape = [n_estimators, loss_.K]
  • ndarray of DecisionTreeRegressor, shape = [n_estimators, loss_.K]
  • ndarray of booleans, optional
  • ndarray of booleans, optional
  • ndarray of shape (n_samples,), or, in the multilabel a list of
  • ndarray of shape (n_samples,), or, in the multilabel a list of
  • ndarray of shape (n_samples_1, n_features)
  • ndarray of shape (n_samples_1, n_features)
  • ndarray of shape (n_samples_2, n_features)
  • ndarray of shape (n_samples_2, n_features)
  • ndarray of shape(n)
  • ndarray of shape(n)
  • ndarray of shape(p, n)
  • ndarray of shape(p, n)
  • ndarray or csc_matrix, shape (n_samples, n_features)
  • ndarray or csc_matrix, shape (n_samples, n_features)
  • ndarray or sparse array, shape: (n_samples_X, n_features)
  • ndarray or sparse array, shape: (n_samples_X, n_features)
  • ndarray or sparse array, shape: (n_samples_Y, n_features)
  • ndarray or sparse array, shape: (n_samples_Y, n_features)
  • ndarray or sparse matrix, shape (n_samples, n_features)
  • ndarray or sparse matrix, shape (n_samples, n_features)
  • ndarray with same shape as u
  • ndarray with same shape as u
  • ndarray,
  • ndarray,
  • ndarray, 2D or 3D
  • ndarray, 2D or 3D
  • ndarray, optional
  • ndarray, optional
  • ndarray, shape ()
  • ndarray, shape ()
  • ndarray, shape (branching_factor + 1, n_features)
  • ndarray, shape (branching_factor + 1, n_features)
  • ndarray, shape (branching_factor + 1,)
  • ndarray, shape (branching_factor + 1,)
  • ndarray, shape (len(w))
  • ndarray, shape (len(w))
  • ndarray, shape (n_classes * n_features,) or
  • ndarray, shape (n_classes * n_features,) or
  • ndarray, shape (n_classes, n_features)
  • ndarray, shape (n_classes, n_features)
  • ndarray, shape (n_classes,)
  • ndarray, shape (n_classes,)
  • ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1)
  • ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1)
  • ndarray, shape (n_cs,)
  • ndarray, shape (n_cs,)
  • ndarray, shape (n_features + 1,) or (n_features + 2,)
  • ndarray, shape (n_features + 1,) or (n_features + 2,)
  • ndarray, shape (n_features, n_features + 1)
  • ndarray, shape (n_features, n_features + 1)
  • ndarray, shape (n_features,)
  • ndarray, shape (n_features,)
  • ndarray, shape (n_features,) or (n_features + 1,)
  • ndarray, shape (n_features,) or (n_features + 1,)
  • ndarray, shape (n_features,), optional
  • ndarray, shape (n_features,), optional
  • ndarray, shape (n_nodes-1,)
  • ndarray, shape (n_nodes-1,)
  • ndarray, shape (n_quantiles, n_features)
  • ndarray, shape (n_quantiles, n_features)
  • ndarray, shape (n_samples, )
  • ndarray, shape (n_samples, )
  • ndarray, shape (n_samples, n_classes)
  • ndarray, shape (n_samples, n_classes)
  • ndarray, shape (n_samples, n_components)
  • ndarray, shape (n_samples, n_components)
  • ndarray, shape (n_samples, n_components), optional, default: None
  • ndarray, shape (n_samples, n_components), optional, default: None
  • ndarray, shape (n_samples, n_features)
  • ndarray, shape (n_samples, n_features)
  • ndarray, shape (n_samples, n_samples)
  • ndarray, shape (n_samples, n_samples)
  • ndarray, shape (n_samples,)
  • ndarray, shape (n_samples,)
  • ndarray, shape (n_samples,) or (n_samples, n_outputs)
  • ndarray, shape (n_samples,) or (n_samples, n_outputs)
  • ndarray, shape (n_samples,), optional
  • ndarray, shape (n_samples,), optional
  • ndarray, shape (n_samples,), optional, default: None
  • ndarray, shape (n_samples,), optional, default: None
  • ndarray, shape (n_samples,), or (n_samples, n_outputs)
  • ndarray, shape (n_samples,), or (n_samples, n_outputs)
  • ndarray, shape(n_quantiles, )
  • ndarray, shape(n_quantiles, )
  • ndarray, shape(n_samples)
  • ndarray, shape(n_samples)
  • ndarray, shape=(n, m)
  • ndarray, shape=(n, m)
  • ndarray, shape=(n,)
  • ndarray, shape=(n,)
  • node label
  • node label
  • non-negative real
  • non-negative real
  • non-negative real, default 1e-06
  • non-negative real, default 1e-06
  • non-negative real, default 1e-06.
  • non-negative real, default 1e-06.
  • non-zero int, inf, -inf, default 1
  • non-zero int, inf, -inf, default 1
  • not used, present for API consistence purpose.
  • not used, present for API consistence purpose.
  • np.array, dtype=np.intp
  • np.array, dtype=np.intp
  • np.ndarray
  • np.ndarray
  • np.ndarray or a sparse matrix class, optional
  • np.ndarray or a sparse matrix class, optional
  • np.ndarray shape [n_samples, NP]
  • np.ndarray shape [n_samples, NP]
  • number
  • number
  • number type, default np.float64
  • number type, default np.float64
  • number type, default=np.float
  • number type, default=np.float
  • numpy array of shape (2200, 2, 62, 47). Shape depends on
  • numpy array of shape (2200, 2, 62, 47). Shape depends on
  • numpy array of shape (2200, 5828). Shape depends on subset.
  • numpy array of shape (2200, 5828). Shape depends on subset.
  • numpy array of shape (2200,). Shape depends on subset.
  • numpy array of shape (2200,). Shape depends on subset.
  • numpy array of shape (400, )
  • numpy array of shape (400, )
  • numpy array of shape (400, 4096)
  • numpy array of shape (400, 4096)
  • numpy array of shape (400, 64, 64)
  • numpy array of shape (400, 64, 64)
  • numpy array of shape (n_samples,)
  • numpy array of shape (n_samples,)
  • numpy array of shape [n_alphas]
  • numpy array of shape [n_alphas]
  • numpy array of shape [n_classes, code_size]
  • numpy array of shape [n_classes, code_size]
  • numpy array of shape [n_classes]
  • numpy array of shape [n_classes]
  • numpy array of shape [n_components, n_features]
  • numpy array of shape [n_components, n_features]
  • numpy array of shape [n_samples, n_features]
  • numpy array of shape [n_samples, n_features]
  • numpy array of shape [n_samples, n_features_new]
  • numpy array of shape [n_samples, n_features_new]
  • numpy array of shape [n_samples, n_samples]
  • numpy array of shape [n_samples, n_samples]
  • numpy array of shape [n_samples, n_targets]
  • numpy array of shape [n_samples, n_targets]
  • numpy array of shape [n_samples,n_features]
  • numpy array of shape [n_samples,n_features]
  • numpy array of shape [n_samples1, n_samples2]
  • numpy array of shape [n_samples1, n_samples2]
  • numpy array of shape [n_samples]
  • numpy array of shape [n_samples]
  • numpy array of shape [n_unique_labels]
  • numpy array of shape [n_unique_labels]
  • numpy array or CSR matrix [n_components, n_features]
  • numpy array or CSR matrix [n_components, n_features]
  • numpy array or CSR matrix of shape [n_samples, n_classes]
  • numpy array or CSR matrix of shape [n_samples, n_classes]
  • numpy array or CSR matrix of shape [n_samples] Target values.
  • numpy array or CSR matrix of shape [n_samples] Target values.
  • numpy array or scipy sparse of shape [n_samples, n_components]
  • numpy array or scipy sparse of shape [n_samples, n_components]
  • numpy array or scipy.sparse matrix of shape (n_samples, n_features)
  • numpy array or scipy.sparse matrix of shape (n_samples, n_features)
  • numpy array or scipy.sparse of shape [n_samples, n_features]
  • numpy array or scipy.sparse of shape [n_samples, n_features]
  • numpy array or sparse matrix of shape [n_samples, n_features]
  • numpy array or sparse matrix of shape [n_samples, n_features]
  • numpy array or sparse matrix of shape [n_samples,n_features]
  • numpy array or sparse matrix of shape [n_samples,n_features]
  • numpy array or sparse matrix with shape [n_samples, n_classes]
  • numpy array or sparse matrix with shape [n_samples, n_classes]
  • numpy array, dtype=np.int, shape (n_samples,)
  • numpy array, dtype=np.int, shape (n_samples,)
  • numpy array, optional
  • numpy array, optional
  • numpy array, shape (n_alphas,)
  • numpy array, shape (n_alphas,)
  • numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas)
  • numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas)
  • numpy array, shape (n_clusters, n_features)
  • numpy array, shape (n_clusters, n_features)
  • numpy array, shape (n_clusters,)
  • numpy array, shape (n_clusters,)
  • numpy array, shape (n_sample, n_features)
  • numpy array, shape (n_sample, n_features)
  • numpy array, shape (n_samples,)
  • numpy array, shape (n_samples,)
  • numpy data type, default np.float64
  • numpy data type, default np.float64
  • numpy random number generator or seed integer
  • numpy random number generator or seed integer
  • numpy type, optional, default np.float64
  • numpy type, optional, default np.float64
  • numpy.RandomState
  • numpy.RandomState
  • numpy.ndarray, shape (n_features, n_features)
  • numpy.ndarray, shape (n_features, n_features)
  • object or None, optional (default=None)
  • object or None, optional (default=None)
  • object type that implements the "fit" and "predict" methods
  • object type that implements the "fit" and "predict" methods
  • object with the joblib.Memory interface
  • object with the joblib.Memory interface
  • object, default=LinearRegression()
  • object, default=LinearRegression()
  • object, default=None
  • object, default=None
  • object, optional
  • object, optional
  • object, optional (default=DecisionTreeClassifier)
  • object, optional (default=DecisionTreeClassifier)
  • object, optional (default=DecisionTreeRegressor)
  • object, optional (default=DecisionTreeRegressor)
  • object, optional (default=None)
  • object, optional (default=None)
  • one of {'continuous', continuous-multioutput'}
  • one of {'continuous', continuous-multioutput'}
  • one of {'multilabel-indicator', 'multiclass', 'binary'}
  • one of {'multilabel-indicator', 'multiclass', 'binary'}
  • optional
  • optional
  • optional, True by default
  • optional, True by default
  • optional, default: 'data'
  • optional, default: 'data'
  • optional, default: 'label'
  • optional, default: 'label'
  • optional, default: 'train'
  • optional, default: 'train'
  • optional, default: None
  • optional, default: None
  • optional, default: True
  • optional, default: True
  • optional, default=True
  • optional, default=True
  • pair of floats (min, max), optional (default=(-10.0, 10.0))
  • pair of floats (min, max), optional (default=(-10.0, 10.0))
  • pair of floats >= 0, default: (1e-5, 1e5)
  • pair of floats >= 0, default: (1e-5, 1e5)
  • positive float
  • positive float
  • positive float, default 0.01
  • positive float, default 0.01
  • positive float, default 1e-4
  • positive float, default 1e-4
  • positive float, optional
  • positive float, optional
  • random state
  • random state
  • record array, shape = (1623,)
  • record array, shape = (1623,)
  • record array, shape = (619,)
  • record array, shape = (619,)
  • returns a trained MLP model.
  • returns a trained MLP model.
  • returns an instance of self.
  • returns an instance of self.
  • returns this MultiLabelBinarizer instance
  • returns this MultiLabelBinarizer instance
  • scipy sparse matrix.
  • scipy sparse matrix.
  • scipy.sparse matrix of shape (n_samples, n_features)
  • scipy.sparse matrix of shape (n_samples, n_features)
  • scipy.sparse matrix, shape (n_features, 1) | (n_targets, n_features)
  • scipy.sparse matrix, shape (n_features, 1) | (n_targets, n_features)
  • scipy.sparse matrix, shape = (n_samples, self.n_features)
  • scipy.sparse matrix, shape = (n_samples, self.n_features)
  • select the portion to load: 'train', 'test' or 'raw'
  • select the portion to load: 'train', 'test' or 'raw'
  • self
  • self
  • seq of Axis objects
  • seq of Axis objects
  • seq of ndarray or None
  • seq of ndarray or None
  • seq of str
  • seq of str
  • sequence of indexable data-structures
  • sequence of indexable data-structures
  • shape=(n_samples, n_components)
  • shape=(n_samples, n_components)
  • sklearn estimator instance
  • sklearn estimator instance
  • sparse CSR matrix, shape (n_samples, n_classes)
  • sparse CSR matrix, shape (n_samples, n_classes)
  • sparse csc matrix of size (n_samples, n_outputs)
  • sparse csc matrix of size (n_samples, n_outputs)
  • sparse csr array, shape = [n_samples, n_nodes]
  • sparse csr array, shape = [n_samples, n_nodes]
  • sparse matrix CSC, shape (n_samples, n_features)
  • sparse matrix CSC, shape (n_samples, n_features)
  • sparse matrix if sparse=True else a 2-d array, dtype=int
  • sparse matrix if sparse=True else a 2-d array, dtype=int
  • sparse matrix in CSR format, shape = [n_samples, n_samples]
  • sparse matrix in CSR format, shape = [n_samples, n_samples]
  • sparse matrix in CSR format, shape = [n_samples, n_samples_fit]
  • sparse matrix in CSR format, shape = [n_samples, n_samples_fit]
  • sparse matrix of shape (dim, dim)
  • sparse matrix of shape (dim, dim)
  • sparse matrix, [n_samples, n_features]
  • sparse matrix, [n_samples, n_features]
  • sparse matrix, shape=(n_samples, n_out)
  • sparse matrix, shape=(n_samples, n_out)
  • str or callable
  • str or callable
  • str or callable, optional (default = 'uniform')
  • str or callable, optional (default = 'uniform')
  • str or estimator instance (default=None)
  • str or estimator instance (default=None)
  • str or int, 1 by default
  • str or int, 1 by default
  • str | None
  • str | None
  • str | callable
  • str | callable
  • str,
  • str,
  • str, 'error' or 'ignore'
  • str, 'error' or 'ignore'
  • str, 'l1' or 'l2'
  • str, 'l1' or 'l2'
  • str, 'l1' or 'l2', default: 'l2'
  • str, 'l1' or 'l2', default: 'l2'
  • str, 'none', 'l2', 'l1', or 'elasticnet'
  • str, 'none', 'l2', 'l1', or 'elasticnet'
  • str, 'onehot', 'onehot-dense' or 'ordinal'
  • str, 'onehot', 'onehot-dense' or 'ordinal'
  • str, (default='box-cox')
  • str, (default='box-cox')
  • str, default 'cyclic'
  • str, default 'cyclic'
  • str, default: 'hinge'
  • str, default: 'hinge'
  • str, default: 'squared_loss'
  • str, default: 'squared_loss'
  • str, default="stratified"
  • str, default="stratified"
  • str, defaults to 'dirichlet_process'.
  • str, defaults to 'dirichlet_process'.
  • str, optional
  • str, optional
  • str, optional (default: None)
  • str, optional (default: None)
  • str, optional (default='uniform')
  • str, optional (default='uniform')
  • str, {'hard', 'soft'} (default='hard')
  • str, {'hard', 'soft'} (default='hard')
  • str, {'l1', 'l2'}
  • str, {'l1', 'l2'}
  • str, {'logistic_regression', 'hinge', 'squared_hinge',
  • str, {'logistic_regression', 'hinge', 'squared_hinge',
  • str, {'ovr', 'crammer_singer'}
  • str, {'ovr', 'crammer_singer'}
  • str, {'ovr', 'multinomial'}
  • str, {'ovr', 'multinomial'}
  • str, {'ovr', 'multinomial'}, default: 'ovr'
  • str, {'ovr', 'multinomial'}, default: 'ovr'
  • strictly positive float, optional (default=0.1)
  • strictly positive float, optional (default=0.1)
  • strictly positive float, optional, (default=0.1)
  • strictly positive float, optional, (default=0.1)
  • strictly positive integer
  • strictly positive integer
  • string ('standard', 'hessian', 'modified' or 'ltsa')
  • string ('standard', 'hessian', 'modified' or 'ltsa')
  • string (default: 'barnes_hut')
  • string (default: 'barnes_hut')
  • string ['auto'|'FW'|'D']
  • string ['auto'|'FW'|'D']
  • string ['auto'|'brute'|'kd_tree'|'ball_tree']
  • string ['auto'|'brute'|'kd_tree'|'ball_tree']
  • string ['auto'|'dense'|'arpack'], default='auto'
  • string ['auto'|'dense'|'arpack'], default='auto'
  • string in ['raw_values', 'uniform_average', 'variance_weighted'] or array-like of shape (n_outputs)
  • string in ['raw_values', 'uniform_average', 'variance_weighted'] or array-like of shape (n_outputs)
  • string in ['raw_values', 'uniform_average', 'variance_weighted'] or None or array-like of shape (n_outputs)
  • string in ['raw_values', 'uniform_average', 'variance_weighted'] or None or array-like of shape (n_outputs)
  • string in ['raw_values', 'uniform_average']
  • string in ['raw_values', 'uniform_average']
  • string in ['raw_values', 'uniform_average'] or array-like of shape = (n_outputs)
  • string in ['raw_values', 'uniform_average'] or array-like of shape = (n_outputs)
  • string or None (default is None)
  • string or None (default is None)
  • string or callable
  • string or callable
  • string or callable, default "euclidean"
  • string or callable, default "euclidean"
  • string or callable, default 'euclidean'
  • string or callable, default 'euclidean'
  • string or callable, default 'minkowski'
  • string or callable, default 'minkowski'
  • string or callable, default: "euclidean"
  • string or callable, default: "euclidean"
  • string or callable, default="linear"
  • string or callable, default="linear"
  • string or callable, default="rbf"
  • string or callable, default="rbf"
  • string or callable, optional
  • string or callable, optional
  • string or callable, optional (default: "fmin_l_bfgs_b")
  • string or callable, optional (default: "fmin_l_bfgs_b")
  • string or callable, optional, default: "euclidean".
  • string or callable, optional, default: "euclidean".
  • string or function, optional, default: "jaccard"
  • string or function, optional, default: "jaccard"
  • string or function, optional. Default: 'logcosh'
  • string or function, optional. Default: 'logcosh'
  • string or numpy array, optional (default: "random")
  • string or numpy array, optional (default: "random")
  • string or unicode
  • string or unicode
  • string or unicode, optional (default=None)
  • string or unicode, optional (default=None)
  • string {'auto', 'full', 'arpack', 'randomized'}
  • string {'auto', 'full', 'arpack', 'randomized'}
  • string {'english'}, list, or None (default)
  • string {'english'}, list, or None (default)
  • string {'filename', 'file', 'content'}
  • string {'filename', 'file', 'content'}
  • string, "nipals" or "svd"
  • string, "nipals" or "svd"
  • string, 'epsilon_insensitive' or 'squared_epsilon_insensitive' (default='epsilon_insensitive')
  • string, 'epsilon_insensitive' or 'squared_epsilon_insensitive' (default='epsilon_insensitive')
  • string, 'hinge' or 'squared_hinge' (default='squared_hinge')
  • string, 'hinge' or 'squared_hinge' (default='squared_hinge')
  • string, 'l1' or 'l2' (default='l2')
  • string, 'l1' or 'l2' (default='l2')
  • string, 'ovr' or 'crammer_singer' (default='ovr')
  • string, 'ovr' or 'crammer_singer' (default='ovr')
  • string, 'train', 'test', or 'all', default='all'
  • string, 'train', 'test', or 'all', default='all'
  • string, 'utf-8' by default.
  • string, 'utf-8' by default.
  • string, [None (default), 'binary', 'micro', 'macro', 'samples', 'weighted']
  • string, [None (default), 'binary', 'micro', 'macro', 'samples', 'weighted']
  • string, [None, 'binary' (default), 'micro', 'macro', 'samples', 'weighted']
  • string, [None, 'binary' (default), 'micro', 'macro', 'samples', 'weighted']
  • string, [None, 'micro', 'macro' (default), 'samples', 'weighted']
  • string, [None, 'micro', 'macro' (default), 'samples', 'weighted']
  • string, boolean or list/tuple of strings (default=False)
  • string, boolean or list/tuple of strings (default=False)
  • string, callable or None, default=None
  • string, callable or None, default=None
  • string, callable or None, optional, default: None
  • string, callable or None, optional, default: None
  • string, callable, list/tuple, dict or None, default: None
  • string, callable, list/tuple, dict or None, default: None
  • string, callable, optional, default "absolute_loss"
  • string, callable, optional, default "absolute_loss"
  • string, callable, or None
  • string, callable, or None
  • string, default 'diag'
  • string, default 'diag'
  • string, default 'minkowski'
  • string, default 'minkowski'
  • string, default 'wmc'
  • string, default 'wmc'
  • string, default : "one_vs_rest"
  • string, default : "one_vs_rest"
  • string, default = "randomized"
  • string, default = "randomized"
  • string, default=''
  • string, default=''
  • string, default='utf-8'
  • string, default='utf-8'
  • string, float, optional default None
  • string, float, optional default None
  • string, in {"log", "squared"}
  • string, in {"log", "squared"}
  • string, list of string, or None, default=None
  • string, list of string, or None, default=None
  • string, optional
  • string, optional
  • string, optional (default: None)
  • string, optional (default: None)
  • string, optional (default="best")
  • string, optional (default="best")
  • string, optional (default="friedman_mse")
  • string, optional (default="friedman_mse")
  • string, optional (default="gini")
  • string, optional (default="gini")
  • string, optional (default="mean")
  • string, optional (default="mean")
  • string, optional (default="mse")
  • string, optional (default="mse")
  • string, optional (default='rbf')
  • string, optional (default='rbf')
  • string, optional, default "dict"
  • string, optional, default "dict"
  • string, optional, default: "nan"
  • string, optional, default: "nan"
  • string, optional, default: 'bistochastic'
  • string, optional, default: 'bistochastic'
  • string, optional, default: 'predict'
  • string, optional, default: 'predict'
  • string, optional, default: 'randomized'
  • string, optional, default: 'randomized'
  • string, optional, default=``euclidean``
  • string, optional, default=``euclidean``
  • string, or callable
  • string, or callable
  • string, or callable, default: "linear"
  • string, or callable, default: "linear"
  • string, type, list of types or None (default="numeric")
  • string, type, list of types or None (default="numeric")
  • string, type, list of types or None (default=None)
  • string, type, list of types or None (default=None)
  • string, {'auto', 'arpack', 'dense'}
  • string, {'auto', 'arpack', 'dense'}
  • string, {'word', 'char', 'char_wb'} or callable
  • string, {'word', 'char', 'char_wb'} or callable
  • string, {'word', 'char'} or callable
  • string, {'word', 'char'} or callable
  • the filesystem path to the root folder where MLComp datasets
  • the filesystem path to the root folder where MLComp datasets
  • the integer id or the string name metadata of the MLComp
  • the integer id or the string name metadata of the MLComp
  • the return value of func
  • the return value of func
  • the warning class
  • the warning class
  • tree.Tree
  • tree.Tree
  • tuple (min, max), default=(0, 1)
  • tuple (min, max), default=(0, 1)
  • tuple (min_n, max_n)
  • tuple (min_n, max_n)
  • tuple (min_n, max_n), default=(1, 1)
  • tuple (min_n, max_n), default=(1, 1)
  • tuple (q_min, q_max), 0.0 < q_min < q_max < 100.0
  • tuple (q_min, q_max), 0.0 < q_min < q_max < 100.0
  • tuple of (A, B) ndarrays
  • tuple of (A, B) ndarrays
  • tuple of ints (image_height, image_width) or
  • tuple of ints (image_height, image_width) or
  • tuple of ints (patch_height, patch_width)
  • tuple of ints (patch_height, patch_width)
  • tuple of warning class, default to Warning
  • tuple of warning class, default to Warning
  • tuple or set, for internal use
  • tuple or set, for internal use
  • tuple, length = n_layers - 2, default (100,)
  • tuple, length = n_layers - 2, default (100,)
  • tuple, optional
  • tuple, optional
  • type, optional
  • type, optional
  • warning class, defaults to Warning.
  • warning class, defaults to Warning.
  • {"average", "complete"}, optional, default: "complete"
  • {"average", "complete"}, optional, default: "complete"
  • {"ward", "complete", "average"}, optional, default "ward"
  • {"ward", "complete", "average"}, optional, default "ward"
  • {"ward", "complete", "average"}, optional, default: "ward"
  • {"ward", "complete", "average"}, optional, default: "ward"
  • {'F', 'C', or None}, optional
  • {'F', 'C', or None}, optional
  • {'SAMME', 'SAMME.R'}, optional (default='SAMME.R')
  • {'SAMME', 'SAMME.R'}, optional (default='SAMME.R')
  • {'all', 'root', 'none'}, optional (default='all')
  • {'all', 'root', 'none'}, optional (default='all')
  • {'ascii', 'unicode', None}
  • {'ascii', 'unicode', None}
  • {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
  • {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
  • {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}
  • {'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga'}
  • {'auto', True, False}
  • {'auto', True, False}
  • {'auto', bool, array_like}, default 'auto'
  • {'auto', bool, array_like}, default 'auto'
  • {'cd', 'lars'}
  • {'cd', 'lars'}
  • {'cd', 'lars'}, default 'cd'
  • {'cd', 'lars'}, default 'cd'
  • {'connectivity', 'distance'}, optional
  • {'connectivity', 'distance'}, optional
  • {'constant', 'adaptive', 'invscaling'}, default 'constant'
  • {'constant', 'adaptive', 'invscaling'}, default 'constant'
  • {'constant', 'invscaling', 'adaptive'}, default 'constant'
  • {'constant', 'invscaling', 'adaptive'}, default 'constant'
  • {'deviance', 'exponential'}, optional (default='deviance')
  • {'deviance', 'exponential'}, optional (default='deviance')
  • {'full', 'tied', 'diag', 'spherical'}
  • {'full', 'tied', 'diag', 'spherical'}
  • {'full', 'tied', 'diag', 'spherical'},
  • {'full', 'tied', 'diag', 'spherical'},
  • {'full', 'tied', 'diag', 'spherical'}, defaults to 'full'
  • {'full', 'tied', 'diag', 'spherical'}, defaults to 'full'
  • {'identity', 'logistic', 'tanh', 'relu'}, default 'relu'
  • {'identity', 'logistic', 'tanh', 'relu'}, default 'relu'
  • {'k-means++', 'random' or an ndarray}
  • {'k-means++', 'random' or an ndarray}
  • {'k-means++', 'random' or an ndarray}, default: 'k-means++'
  • {'k-means++', 'random' or an ndarray}, default: 'k-means++'
  • {'k-means++', 'random' or ndarray or callable} optional
  • {'k-means++', 'random' or ndarray or callable} optional
  • {'k-means++', 'random', or ndarray, or a callable}, optional
  • {'k-means++', 'random', or ndarray, or a callable}, optional
  • {'kmeans', 'random'}, defaults to 'kmeans'.
  • {'kmeans', 'random'}, defaults to 'kmeans'.
  • {'knn', 'rbf', callable}
  • {'knn', 'rbf', callable}
  • {'lapack', 'randomized'}
  • {'lapack', 'randomized'}
  • {'lars', 'cd'}
  • {'lars', 'cd'}
  • {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'}
  • {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'}
  • {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'}
  • {'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold'}
  • {'lbfgs', 'newton-cg', 'liblinear', 'sag', 'saga'}
  • {'lbfgs', 'newton-cg', 'liblinear', 'sag', 'saga'}
  • {'lbfgs', 'sgd', 'adam'}, default 'adam'
  • {'lbfgs', 'sgd', 'adam'}, default 'adam'
  • {'linear', 'square', 'exponential'}, optional (default='linear')
  • {'linear', 'square', 'exponential'}, optional (default='linear')
  • {'ls', 'lad', 'huber', 'quantile'}, optional (default='ls')
  • {'ls', 'lad', 'huber', 'quantile'}, optional (default='ls')
  • {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'},
  • {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'},
  • {'parallel', 'deflation'}
  • {'parallel', 'deflation'}
  • {'parallel', 'deflation'}, optional
  • {'parallel', 'deflation'}, optional
  • {'percentile', 'k_best', 'fpr', 'fdr', 'fwe'}
  • {'percentile', 'k_best', 'fpr', 'fdr', 'fwe'}
  • {'squared_hinge', 'log'}, default 'squared_hinge'
  • {'squared_hinge', 'log'}, default 'squared_hinge'
  • {'standard', 'hessian', 'modified', 'ltsa'}
  • {'standard', 'hessian', 'modified', 'ltsa'}
  • {'strict', 'ignore', 'replace'}
  • {'strict', 'ignore', 'replace'}
  • {'strict', 'ignore', 'replace'}, optional
  • {'strict', 'ignore', 'replace'}, optional
  • {None, 'arpack', 'lobpcg', or 'amg'}, default None
  • {None, 'arpack', 'lobpcg', or 'amg'}, default None
  • {None, 'auto', 'svd', eigen'}, optional
  • {None, 'auto', 'svd', eigen'}, optional
  • {True, False, 'auto'},
  • {True, False, 'auto'},
  • {True, False, 'auto'}, default 'auto'
  • {True, False, 'auto'}, default 'auto'
  • {array, sparse matrix}, shape = (n_samples, n_features * (2*sample_steps + 1))
  • {array, sparse matrix}, shape = (n_samples, n_features * (2*sample_steps + 1))
  • {array, sparse matrix}, shape (n_samples_1, n_samples_2)
  • {array, sparse matrix}, shape (n_samples_1, n_samples_2)
  • {array, sparse matrix}, shape = [n_samples, n_features]
  • {array, sparse matrix}, shape = [n_samples, n_features]
  • {array, sparse matrix}, shape [n_samples, n_features + 1]
  • {array, sparse matrix}, shape [n_samples, n_features + 1]
  • {array-like, object with finite length or shape}
  • {array-like, object with finite length or shape}
  • {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors}
  • {array-like, sparse matrix, BallTree, KDTree, NearestNeighbors}
  • {array-like, sparse matrix} shape = (n_samples, n_features)
  • {array-like, sparse matrix} shape = (n_samples, n_features)
  • {array-like, sparse matrix} of shape = [n_samples, n_features]
  • {array-like, sparse matrix} of shape = [n_samples, n_features]
  • {array-like, sparse matrix} shape (n_samples, n_features)
  • {array-like, sparse matrix} shape (n_samples, n_features)
  • {array-like, sparse matrix} shape = [n_samples, n_features]
  • {array-like, sparse matrix} shape = [n_samples, n_features]
  • {array-like, sparse matrix}, shape (n_samples, n_clusters)
  • {array-like, sparse matrix}, shape (n_samples, n_clusters)
  • {array-like, sparse matrix}, shape (n_samples, n_components)
  • {array-like, sparse matrix}, shape (n_samples, n_components)
  • {array-like, sparse matrix}, shape (n_samples, n_features)
  • {array-like, sparse matrix}, shape (n_samples, n_features)
  • {array-like, sparse matrix}, shape (n_samples, n_features), None
  • {array-like, sparse matrix}, shape (n_samples, n_features), None
  • {array-like, sparse matrix}, shape (n_samples1, n_features)
  • {array-like, sparse matrix}, shape (n_samples1, n_features)
  • {array-like, sparse matrix}, shape (n_samples2, n_features)
  • {array-like, sparse matrix}, shape (n_samples2, n_features)
  • {array-like, sparse matrix}, shape (n_samples_1, n_features)
  • {array-like, sparse matrix}, shape (n_samples_1, n_features)
  • {array-like, sparse matrix}, shape (n_samples_2, n_features)
  • {array-like, sparse matrix}, shape (n_samples_2, n_features)
  • {array-like, sparse matrix}, shape (n_samples_a, n_features)
  • {array-like, sparse matrix}, shape (n_samples_a, n_features)
  • {array-like, sparse matrix}, shape (n_samples_b, n_features)
  • {array-like, sparse matrix}, shape (n_samples_b, n_features)
  • {array-like, sparse matrix}, shape = (n_samples, n_features)
  • {array-like, sparse matrix}, shape = (n_samples, n_features)
  • {array-like, sparse matrix}, shape = (n_samples, n_features_in)
  • {array-like, sparse matrix}, shape = (n_samples, n_features_in)
  • {array-like, sparse matrix}, shape = [n_samples (, n_labels)]
  • {array-like, sparse matrix}, shape = [n_samples (, n_labels)]
  • {array-like, sparse matrix}, shape = [n_samples, n_features]
  • {array-like, sparse matrix}, shape = [n_samples, n_features]
  • {array-like, sparse matrix}, shape = [n_samples,n_features]
  • {array-like, sparse matrix}, shape = [n_samples,n_features]
  • {array-like, sparse matrix}, shape [n_samples, n_features]
  • {array-like, sparse matrix}, shape [n_samples, n_features]
  • {array-like, sparse matrix}, shape=[n_samples, n_features]
  • {array-like, sparse matrix}, shape=[n_samples, n_features]
  • {array-like, sparse}, shape=[n_classes_true, n_classes_pred]
  • {array-like, sparse}, shape=[n_classes_true, n_classes_pred]
  • {array-like}, shape (n_samples, n_features)
  • {array-like}, shape (n_samples, n_features)
  • {dict, 'balanced'}, optional
  • {dict, 'balanced'}, optional
  • {float, array-like}, shape (n_targets)
  • {float, array-like}, shape (n_targets)
  • {float, array-like}, shape = [n_targets]
  • {float, array-like}, shape = [n_targets]
  • {sparse matrix, ndarray, LinearOperatorLinear}
  • {sparse matrix, ndarray, LinearOperatorLinear}