statsmodelsΒΆ

  • Float
  • Float
  • float, optional
  • float, optional
  • ndarray (neqs x coint_rank)
  • ndarray (neqs x coint_rank)
  • 'approx' (default) or 'asymp'
  • 'approx' (default) or 'asymp'
  • 'auto, 'size', or 'off'
  • 'auto, 'size', or 'off'
  • 'bartlett' or 'regression'
  • 'bartlett' or 'regression'
  • 'cluster' or 'hac' or False
  • 'cluster' or 'hac' or False
  • 'display' (default), 'raw' or 'strings'
  • 'display' (default), 'raw' or 'strings'
  • 'endog' or int
  • 'endog' or int
  • 'l1' or 'l1_cvxopt_cp'
  • 'l1' or 'l1_cvxopt_cp'
  • 'lagged', 'centered', or 'leading'
  • 'lagged', 'centered', or 'leading'
  • 'mean', 'linear', 'prob', optional.
  • 'mean', 'linear', 'prob', optional.
  • 'none', 'drop', or 'raise'
  • 'none', 'drop', or 'raise'
  • 'norm' or callable
  • 'norm' or callable
  • 'string', int, or None
  • 'string', int, or None
  • 'two_sided' (default), 'less' or 'greater'
  • 'two_sided' (default), 'less' or 'greater'
  • 'unbiased' (default) or 'mle'
  • 'unbiased' (default) or 'mle'
  • (k_ar x neqs x neqs)
  • (k_ar x neqs x neqs)
  • (n,3) array
  • (n,3) array
  • (optional) instance of ResultStore
  • (optional) instance of ResultStore
  • (optional), float or array
  • (optional), float or array
  • (optionsal), float or array
  • (optionsal), float or array
  • 1
  • 1
  • 1-D ndarray, shape (K,)
  • 1-D ndarray, shape (K,)
  • 1d array, (nparams,)
  • 1d array, (nparams,)
  • 1d or 2d array
  • 1d or 2d array
  • 1darray
  • 1darray
  • 2-D ndarray of ints, shape (nobs, K)
  • 2-D ndarray of ints, shape (nobs, K)
  • 2d array (N,1) (optional)
  • 2d array (N,1) (optional)
  • 2d array (N,K)
  • 2d array (N,K)
  • 2d array, optional
  • 2d array, optional
  • 4
  • 4
  • CointRankResults
  • CointRankResults
  • VECMResults
  • VECMResults
  • VECM
  • VECM
  • statsmodels.tsa.vector_ar.hypothesis_test_results.CausalityTestResults
  • statsmodels.tsa.vector_ar.hypothesis_test_results.CausalityTestResults
  • statsmodels.tsa.vector_ar.hypothesis_test_results.NormalityTestResults
  • statsmodels.tsa.vector_ar.hypothesis_test_results.NormalityTestResults
  • statsmodels.tsa.vector_ar.hypothesis_test_results.WhitenessTestResults
  • statsmodels.tsa.vector_ar.hypothesis_test_results.WhitenessTestResults
  • statsmodels.tsa.vector_ar.var_model.LagOrderResults
  • statsmodels.tsa.vector_ar.var_model.LagOrderResults
  • ???
  • ???
  • A DiscreteModel instance
  • A DiscreteModel instance
  • A scipy.stats or statsmodels distribution
  • A scipy.stats or statsmodels distribution
  • AR Model instance
  • AR Model instance
  • AR model instance
  • AR model instance
  • ARMA instance
  • ARMA instance
  • ARMAResults instance
  • ARMAResults instance
  • AllPairsResults instance
  • AllPairsResults instance
  • Array_like
  • Array_like
  • Axes instance
  • Axes instance
  • Bool
  • Bool
  • Boolean
  • Boolean
  • Bunch
  • Bunch
  • ContrastResult instance
  • ContrastResult instance
  • ContrastResults instance
  • ContrastResults instance
  • CovariancePenalty object
  • CovariancePenalty object
  • CustomKernel object
  • CustomKernel object
  • DataFrame or pandas Styler instance
  • DataFrame or pandas Styler instance
  • DataFrames
  • DataFrames
  • Dataset instance
  • Dataset instance
  • DescStat instance
  • DescStat instance
  • Dictionary
  • Dictionary
  • Discrepancy of observed values
  • Discrepancy of observed values
  • DiscreteResults instance
  • DiscreteResults instance
  • DistributedModel class instance
  • DistributedModel class instance
  • DynamicFactor instance
  • DynamicFactor instance
  • ExponentialSmoothing class
  • ExponentialSmoothing class
  • ExponentialSmoothing instance
  • ExponentialSmoothing instance
  • Factor
  • Factor
  • Factor key
  • Factor key
  • FactorResults instance
  • FactorResults instance
  • False or float in (0, 1)
  • False or float in (0, 1)
  • Figure
  • Figure
  • FilterResults
  • FilterResults
  • Float (non-negative)
  • Float (non-negative)
  • Function.
  • Function.
  • GEEResults instance
  • GEEResults instance
  • GMMResult instance
  • GMMResult instance
  • HamiltonFilterResults or KimSmootherResults instance
  • HamiltonFilterResults or KimSmootherResults instance
  • HdrResults instance
  • HdrResults instance
  • Holder
  • Holder
  • HoltWintersResults class
  • HoltWintersResults class
  • IRAnalysis
  • IRAnalysis
  • Int
  • Int
  • Integer or 'defined_by_method'
  • Integer or 'defined_by_method'
  • Iterable
  • Iterable
  • KDEMultivariate instance
  • KDEMultivariate instance
  • KalmanFilter
  • KalmanFilter
  • KalmanFilter instance
  • KalmanFilter instance
  • KalmanSmoother
  • KalmanSmoother
  • Kernel Class
  • Kernel Class
  • LagOrderResults
  • LagOrderResults
  • List of strings of length equal to the number of parameters
  • List of strings of length equal to the number of parameters
  • MLEModel instance
  • MLEModel instance
  • MarkovAutoregression instance
  • MarkovAutoregression instance
  • MarkovRegression instance
  • MarkovRegression instance
  • MarkovSwitching instance
  • MarkovSwitching instance
  • MarkovSwitchingModel
  • MarkovSwitchingModel
  • Matplotlib AxesSubplot instance
  • Matplotlib AxesSubplot instance
  • Matplotlib AxesSubplot instance, optional
  • Matplotlib AxesSubplot instance, optional
  • Matplotlib Figure instance, optional
  • Matplotlib Figure instance, optional
  • Matplotlib Figure object
  • Matplotlib Figure object
  • Matplotlib LinearSegmentedColormap instance, optional
  • Matplotlib LinearSegmentedColormap instance, optional
  • Matplotlib axes instance
  • Matplotlib axes instance
  • Matplotlib axes instance, optional
  • Matplotlib axes instance, optional
  • Matplotlib figure instance
  • Matplotlib figure instance
  • Matplotlib figure instance, optional
  • Matplotlib figure instance, optional
  • MixedLMParams object
  • MixedLMParams object
  • MixedLMParams or array-like
  • MixedLMParams or array-like
  • MixedLMParams, or array-like.
  • MixedLMParams, or array-like.
  • Model class
  • Model class
  • Model instance
  • Model instance
  • Model results instance
  • Model results instance
  • None
  • None
  • None or 1-D ndarray
  • None or 1-D ndarray
  • None or a list of tuples
  • None or a list of tuples
  • None or array
  • None or array
  • None or axis instance
  • None or axis instance
  • None or dict
  • None or dict
  • None or family instance
  • None or family instance
  • None or float
  • None or float
  • None or float in (0,1)
  • None or float in (0,1)
  • None or function
  • None or function
  • None or int
  • None or int
  • None or integer or float in intervall (0,1)
  • None or integer or float in intervall (0,1)
  • None or joblib parallel_backend object
  • None or joblib parallel_backend object
  • None or list of int
  • None or list of int
  • None or list of smoother instances
  • None or list of smoother instances
  • None or matplotlib axis instance
  • None or matplotlib axis instance
  • None or matplotlib figure instance
  • None or matplotlib figure instance
  • None or string
  • None or string
  • None or tuple
  • None or tuple
  • None or tuple of dicts
  • None or tuple of dicts
  • None or tuple of int (nrows, ncols)
  • None or tuple of int (nrows, ncols)
  • None, 'dfk1', or 'dfk2'
  • None, 'dfk1', or 'dfk2'
  • None, 'mean', or function
  • None, 'mean', or function
  • NormalityTestResults
  • NormalityTestResults
  • OLS result instance
  • OLS result instance
  • OLS results instance
  • OLS results instance
  • PHReg model instance
  • PHReg model instance
  • Panel
  • Panel
  • Penalty object
  • Penalty object
  • Real
  • Real
  • Record Array
  • Record Array
  • RecursiveLS instance
  • RecursiveLS instance
  • Regression Results instance
  • Regression Results instance
  • RegressionEffects instance
  • RegressionEffects instance
  • RegressionFDR instance
  • RegressionFDR instance
  • RegressionResults instance
  • RegressionResults instance
  • Representation
  • Representation
  • Result instance
  • Result instance
  • ResultStore, optional
  • ResultStore, optional
  • Results instance
  • Results instance
  • Results object
  • Results object
  • RobustNorm, optional
  • RobustNorm, optional
  • RootResult (optional)
  • RootResult (optional)
  • SARIMAX instance
  • SARIMAX instance
  • SimpleExpSmoothing class
  • SimpleExpSmoothing class
  • SimpleTable
  • SimpleTable
  • SimpleTable instance
  • SimpleTable instance
  • StataWriter instance
  • StataWriter instance
  • String
  • String
  • Summary instance
  • Summary instance
  • SummaryTable
  • SummaryTable
  • TODO: not implemented yet
  • TODO: not implemented yet
  • TableDist object.
  • TableDist object.
  • True or False
  • True or False
  • TukeyHSDResults instance
  • TukeyHSDResults instance
  • UnobservedComponents instance
  • UnobservedComponents instance
  • VAR instance
  • VAR instance
  • VAR model instance
  • VAR model instance
  • VARMAX instance
  • VARMAX instance
  • VARResults or VECMResults
  • VARResults or VECMResults
  • VARResults or statsmodels.tsa.vecm.vecm.VECMResults
  • VARResults or statsmodels.tsa.vecm.vecm.VECMResults
  • WhitenessTestResults
  • WhitenessTestResults
  • ProbPlot instance, array-like, or None, optional
  • ProbPlot instance, array-like, or None, optional
  • statsmodels.tsa.arima.ARMA instance
  • statsmodels.tsa.arima.ARMA instance
  • a dict of slices
  • a dict of slices
  • a link function instance
  • a link function instance
  • a link instance, optional
  • a link instance, optional
  • a list of figure handles
  • a list of figure handles
  • a variance function
  • a variance function
  • anything
  • anything
  • array (1+nobs,nvars)
  • array (1+nobs,nvars)
  • array (horiz, nvars)
  • array (horiz, nvars)
  • array (nlags, nvar, nvar)
  • array (nlags, nvar, nvar)
  • array (nlags,nvars,nvars)
  • array (nlags,nvars,nvars)
  • array (nlags-1, nvar, nvar)
  • array (nlags-1, nvar, nvar)
  • array (nmoms, nmoms)
  • array (nmoms, nmoms)
  • array (nobs+horiz, nvars)
  • array (nobs+horiz, nvars)
  • array (nobs, 2)
  • array (nobs, 2)
  • array (nobs,nchoices)
  • array (nobs,nchoices)
  • array (nobs,nvars)
  • array (nobs,nvars)
  • array (nrepl,)
  • array (nrepl,)
  • array (optional)
  • array (optional)
  • array 1d, (nobs+?,)
  • array 1d, (nobs+?,)
  • array of shape given by size
  • array of shape given by size
  • array or None
  • array or None
  • array or float, optional
  • array or float, optional
  • array or pd.DataFrame
  • array or pd.DataFrame
  • array, (nlags,nvars,nvars)
  • array, (nlags,nvars,nvars)
  • array, (nobs, nchoices)
  • array, (nobs, nchoices)
  • array, (nobs, nobs)
  • array, (nobs, nobs)
  • array, (nobs, nre) or (nobs,)
  • array, (nobs, nre) or (nobs,)
  • array, (nobs,nvars,nvars)
  • array, (nobs,nvars,nvars)
  • array, (nre+1,)
  • array, (nre+1,)
  • array, optional
  • array, optional
  • array, shape () or (1,) or (K,)
  • array, shape () or (1,) or (K,)
  • array, shape (M, N)
  • array, shape (M, N)
  • array, shape (M,) or (M, K)
  • array, shape (M,) or (M, K)
  • array, shape (N, M)
  • array, shape (N, M)
  • array, shape (N,) or (N, K) depending on shape of b
  • array, shape (N,) or (N, K) depending on shape of b
  • array, shape (min(M,N),)
  • array, shape (min(M,N),)
  • array-like (rank + 1 if rank < neqs else rank)
  • array-like (rank + 1 if rank < neqs else rank)
  • array-like (rank +1 if rank < neqs else rank)
  • array-like (rank +1 if rank < neqs else rank)
  • array-like (length must be divisible by ncut)
  • array-like (length must be divisible by ncut)
  • array-like (nobs_tot x neqs)
  • array-like (nobs_tot x neqs)
  • array-like of datetime, optional
  • array-like of datetime, optional
  • array-like, (nobs,) or (nobs, k_vars)
  • array-like, (nobs,) or (nobs, k_vars)
  • array-like, optional An array of entry times for handling
  • array-like, optional An array of entry times for handling
  • array-like, optional after fit has been called
  • array-like, optional after fit has been called
  • array_lie
  • array_lie
  • array_lik, 1d
  • array_lik, 1d
  • array_like (n_samples, k_vars)
  • array_like (n_samples, k_vars)
  • array_like or None, optional
  • array_like or None, optional
  • array_like or instance of DescrStatsW
  • array_like or instance of DescrStatsW
  • array_like, 1d, (nar+nma+1,)
  • array_like, 1d, (nar+nma+1,)
  • array_like, 1d, optional
  • array_like, 1d, optional
  • array_like, same ndim as x, currently 2d
  • array_like, same ndim as x, currently 2d
  • array_likes, optional
  • array_likes, optional
  • arraylike
  • arraylike
  • arraylike or None
  • arraylike or None
  • axes, optional
  • axes, optional
  • axis or figure instance
  • axis or figure instance
  • bool (default is True)
  • bool (default is True)
  • bool , optional
  • bool , optional
  • bool or None
  • bool or None
  • bool or string, optional
  • bool or string, optional
  • bool or tuple of scalars, optional
  • bool or tuple of scalars, optional
  • bool or tuple, optional
  • bool or tuple, optional
  • bool,
  • bool,
  • bool, default False
  • bool, default False
  • bool, default is True
  • bool, default is True
  • bool, default: False
  • bool, default: False
  • bool, default: True
  • bool, default: True
  • bool, optional
  • bool, optional
  • bool, optional (default True)
  • bool, optional (default True)
  • boolean,
  • boolean,
  • boolean, default True
  • boolean, default True
  • boolean, default: False
  • boolean, default: False
  • boolean, int, str, or datetime, optional
  • boolean, int, str, or datetime, optional
  • boolean, optional
  • boolean, optional
  • boolean,optional
  • boolean,optional
  • boot, optional
  • boot, optional
  • callable
  • callable
  • callable (default is numpy.exp)
  • callable (default is numpy.exp)
  • callable (default is numpy.log)
  • callable (default is numpy.log)
  • callable callback(xk)
  • callable callback(xk)
  • callable callback(xk), optional
  • callable callback(xk), optional
  • callable or float
  • callable or float
  • class instance
  • class instance
  • class, optional
  • class, optional
  • continuous distribution
  • continuous distribution
  • depends on cov_type
  • depends on cov_type
  • dict or None
  • dict or None
  • dict or None, optional
  • dict or None, optional
  • dict, None
  • dict, None
  • dict, optional
  • dict, optional
  • dict-like
  • dict-like
  • dict-like or None
  • dict-like or None
  • dict_like
  • dict_like
  • dictionary of name,tuple
  • dictionary of name,tuple
  • dictionary of name:tuple
  • dictionary of name:tuple
  • discrete frozen distribution
  • discrete frozen distribution
  • distribution instance
  • distribution instance
  • distribution instance with fit_fr method
  • distribution instance with fit_fr method
  • dit-like
  • dit-like
  • extra arguments
  • extra arguments
  • extra keyword arguments
  • extra keyword arguments
  • figure
  • figure
  • file path or buffer
  • file path or buffer
  • filename or file handle
  • filename or file handle
  • fitted linear model results instance
  • fitted linear model results instance
  • float (for general case will be array)
  • float (for general case will be array)
  • float (0 < signif < 1)
  • float (0 < signif < 1)
  • float (default 1e-6)
  • float (default 1e-6)
  • float (default is 0.5)
  • float (default is 0.5)
  • float (default is 0.8)
  • float (default is 0.8)
  • float (default: alpha = 0.05)
  • float (default: alpha = 0.05)
  • float (negative) or None
  • float (negative) or None
  • float (optional)
  • float (optional)
  • float (positive) or None
  • float (positive) or None
  • float 0 < alpha < 1, default 0.05
  • float 0 < alpha < 1, default 0.05
  • float between 0 and 1, default 5 %
  • float between 0 and 1, default 5 %
  • float between 0 and 1, optional
  • float between 0 and 1, optional
  • float in (0, 1)
  • float in (0, 1)
  • float in (0, 1), optional
  • float in (0, 1), optional
  • float in (0,1)
  • float in (0,1)
  • float in interval (0,1)
  • float in interval (0,1)
  • float or 'auto' (default = 'auto')
  • float or 'auto' (default = 'auto')
  • float or 'med', 'min', 'max'
  • float or 'med', 'min', 'max'
  • float or None
  • float or None
  • float or None, optional
  • float or None, optional
  • float or array, optional.
  • float or array, optional.
  • float or inf
  • float or inf
  • float, 0 < alpha < 1
  • float, 0 < alpha < 1
  • float, 0 < alpha < 1 or None
  • float, 0 < alpha < 1 or None
  • float, 0 < signif < 1
  • float, 0 < signif < 1
  • float, 0 < signif < 1, default 5 %
  • float, 0 < signif < 1, default 5 %
  • float, 0 <= pvalue <= 1
  • float, 0 <= pvalue <= 1
  • float, a small positive number
  • float, a small positive number
  • float, between 0 and 1
  • float, between 0 and 1
  • float, default 1.96
  • float, default 1.96
  • float, default 5%
  • float, default 5%
  • float, optional
  • float, optional
  • float, {0.1, 0.05, 0.01}, default: 0.05
  • float, {0.1, 0.05, 0.01}, default: 0.05
  • formula expression or tuple
  • formula expression or tuple
  • function
  • function
  • function (defualt None)
  • function (defualt None)
  • function (key) -> dict, optional
  • function (key) -> dict, optional
  • function (key) -> string, optional
  • function (key) -> string, optional
  • function mapping reals to positive reals
  • function mapping reals to positive reals
  • function, default: kernel_rbf
  • function, default: kernel_rbf
  • function, optional
  • function, optional
  • function, random number generator
  • function, random number generator
  • generalized_linear_model.PredictionResults
  • generalized_linear_model.PredictionResults
  • generator
  • generator
  • generator or None
  • generator or None
  • html color
  • html color
  • instance
  • instance
  • instance (optional)
  • instance (optional)
  • instance of (GenericLikelihood ?)Result class
  • instance of (GenericLikelihood ?)Result class
  • instance of Bunch with
  • instance of Bunch with
  • instance of CompareMeans
  • instance of CompareMeans
  • instance of GMMResults
  • instance of GMMResults
  • instance of LikelihoodResults
  • instance of LikelihoodResults
  • instance of MVNormal
  • instance of MVNormal
  • instance of MVT
  • instance of MVT
  • instance of RegressionResults
  • instance of RegressionResults
  • instance of SimpleTable
  • instance of SimpleTable
  • instance of a distribution class
  • instance of a distribution class
  • instance of result class
  • instance of result class
  • int (0 <= rank <= neqs)
  • int (0 <= rank <= neqs)
  • int (default is 0)
  • int (default is 0)
  • int (default is 2)
  • int (default is 2)
  • int (default: 1)
  • int (default: 1)
  • int (optional, default=1)
  • int (optional, default=1)
  • int > 0
  • int > 0
  • int >= 0
  • int >= 0
  • int in {2, ..., 10}
  • int in {2, ..., 10}
  • int or 'cue'
  • int or 'cue'
  • int or 'freq', optional
  • int or 'freq', optional
  • int or None
  • int or None
  • int or None, default: None
  • int or None, default: None
  • int or None, optional
  • int or None, optional
  • int or bin edges
  • int or bin edges
  • int or np.e
  • int or np.e
  • int or np.e, optional
  • int or np.e, optional
  • int or np.inf
  • int or np.inf
  • int or str or sequence of int or str or None, default: None
  • int or str or sequence of int or str or None, default: None
  • int or str {1,2,3} or {"I","II","III"}
  • int or str {1,2,3} or {"I","II","III"}
  • int, 0 <= coint_rank <= neqs
  • int, 0 <= coint_rank <= neqs
  • int, >= 1
  • int, >= 1
  • int, default 1
  • int, default 1
  • int, default 100
  • int, default 100
  • int, default 1000
  • int, default 1000
  • int, default 500
  • int, default 500
  • int, default None
  • int, default None
  • int, default: 0
  • int, default: 0
  • int, nonnegative
  • int, nonnegative
  • int, optiona
  • int, optiona
  • int, optional
  • int, optional
  • int, optional0
  • int, optional0
  • int, str, or datetime
  • int, str, or datetime
  • int, str, or datetime, optional
  • int, str, or datetime, optional
  • integer (default 501)
  • integer (default 501)
  • integer (default: 0)
  • integer (default: 0)
  • integer, optional
  • integer, optional
  • iterable of DataFrames
  • iterable of DataFrames
  • iterable or iterable of iterables, optional
  • iterable or iterable of iterables, optional
  • kalman_filter.PredictionResults
  • kalman_filter.PredictionResults
  • kalman_filter.PredictionResults instance
  • kalman_filter.PredictionResults instance
  • keys for term_slices
  • keys for term_slices
  • keyword arguments
  • keyword arguments
  • keywords
  • keywords
  • label
  • label
  • linear_model.PredictionResults
  • linear_model.PredictionResults
  • link function or None
  • link function or None
  • list (n_samples,)
  • list (n_samples,)
  • list ? check
  • list ? check
  • list of SimpleTable
  • list of SimpleTable
  • list of SimpleTable instances
  • list of SimpleTable instances
  • list of arrays
  • list of arrays
  • list of floats between 0 and 1, optional
  • list of floats between 0 and 1, optional
  • list of length 2
  • list of length 2
  • list of lists or 2d array (not matrix!)
  • list of lists or 2d array (not matrix!)
  • list of mu, mc2, skew, kurt
  • list of mu, mc2, skew, kurt
  • list of ndarrays
  • list of ndarrays
  • list of pairs
  • list of pairs
  • list of str or None
  • list of str or None
  • list of str, optional
  • list of str, optional
  • list of units
  • list of units
  • list or None
  • list or None
  • list or None, optional
  • list or None, optional
  • list, length s+1
  • list, length s+1
  • list, optional
  • list, optional
  • list/tuple of array-like
  • list/tuple of array-like
  • m x m array
  • m x m array
  • marginal effects instance
  • marginal effects instance
  • matplotlib Axes instance
  • matplotlib Axes instance
  • matplotlib Figure
  • matplotlib Figure
  • matplotlib Figure instance
  • matplotlib Figure instance
  • matplotlib axes
  • matplotlib axes
  • matplotlib axes instance
  • matplotlib axes instance
  • matplotlib axes object
  • matplotlib axes object
  • matplotlib axis, optional
  • matplotlib axis, optional
  • matplotlib figure
  • matplotlib figure
  • matplotlib figure instance
  • matplotlib figure instance
  • matplotlib.Axes, optional
  • matplotlib.Axes, optional
  • matplotlib.Figure
  • matplotlib.Figure
  • matplotlib.axes
  • matplotlib.axes
  • matplotlib.axes, optional
  • matplotlib.axes, optional
  • model class, optional
  • model class, optional
  • model instance
  • model instance
  • model results instance
  • model results instance
  • module
  • module
  • namedtuple
  • namedtuple
  • nd_array, (n_cat, n_cat)
  • nd_array, (n_cat, n_cat)
  • nd_array, (n_rows, n_cat)
  • nd_array, (n_rows, n_cat)
  • ndarray (#(determinist. terms inside the coint. rel.) x coint_rank)
  • ndarray (#(determinist. terms inside the coint. rel.) x coint_rank)
  • ndarray (1 x coint_rank)
  • ndarray (1 x coint_rank)
  • ndarray (1 x neqs) or (neqs)
  • ndarray (1 x neqs) or (neqs)
  • ndarray (Kp + 1) x K
  • ndarray (Kp + 1) x K
  • ndarray (exog_coint.shape[1] x coint_rank) or None
  • ndarray (exog_coint.shape[1] x coint_rank) or None
  • ndarray (k x k), lower triangular
  • ndarray (k x k), lower triangular
  • ndarray (k x k), optional
  • ndarray (k x k), optional
  • ndarray (k_ar x neqs x neqs)
  • ndarray (k_ar x neqs x neqs)
  • ndarray (k_ar x neqs)
  • ndarray (k_ar x neqs)
  • ndarray (k_ar_diff*neqs x nobs)
  • ndarray (k_ar_diff*neqs x nobs)
  • ndarray (k_vars, k_vars)
  • ndarray (k_vars, k_vars)
  • ndarray (k_vars, k_vars) or scalar
  • ndarray (k_vars, k_vars) or scalar
  • ndarray (len_endog x n_seasons-1)
  • ndarray (len_endog x n_seasons-1)
  • ndarray (length k)
  • ndarray (length k)
  • ndarray (maxn x k x k)
  • ndarray (maxn x k x k)
  • ndarray (maxn x neqs x neqs)
  • ndarray (maxn x neqs x neqs)
  • ndarray (neqs x #(deterministic terms outside the coint. rel.))
  • ndarray (neqs x #(deterministic terms outside the coint. rel.))
  • ndarray (neqs x 1) or (neqs x 0)
  • ndarray (neqs x 1) or (neqs x 0)
  • ndarray (neqs x coint_rank)
  • ndarray (neqs x coint_rank)
  • ndarray (neqs x det. terms outside the coint. relation)
  • ndarray (neqs x det. terms outside the coint. relation)
  • ndarray (neqs x exog_coefs.shape[1])
  • ndarray (neqs x exog_coefs.shape[1])
  • ndarray (neqs x neqs)
  • ndarray (neqs x neqs)
  • ndarray (neqs x neqs), optional
  • ndarray (neqs x neqs), optional
  • ndarray (neqs x neqs*(k_ar-1))
  • ndarray (neqs x neqs*(k_ar-1))
  • ndarray (neqs x nobs)
  • ndarray (neqs x nobs)
  • ndarray (neqs x nobs_tot)
  • ndarray (neqs x nobs_tot)
  • ndarray (neqs x number_of_deterministic_terms)
  • ndarray (neqs x number_of_deterministic_terms)
  • ndarray (neqs x seasons)
  • ndarray (neqs x seasons)
  • ndarray (neqs**2 * k_ar x neqs**2 * k_ar)
  • ndarray (neqs**2 * k_ar x neqs**2 * k_ar)
  • ndarray (neqs+num_det_coef_coint x coint_rank)
  • ndarray (neqs+num_det_coef_coint x coint_rank)
  • ndarray (nobs x neqs)
  • ndarray (nobs x neqs)
  • ndarray (nobs,) or (nobs, k_var)
  • ndarray (nobs,) or (nobs, k_var)
  • ndarray (nobs,) or (nobs, nobs)
  • ndarray (nobs,) or (nobs, nobs)
  • ndarray (nobs_tot x #det_terms) or None, default: None
  • ndarray (nobs_tot x #det_terms) or None, default: None
  • ndarray (nobs_tot x #det_terms_coint) or None, default: None
  • ndarray (nobs_tot x #det_terms_coint) or None, default: None
  • ndarray (num_det_coef_coint x coint_rank)
  • ndarray (num_det_coef_coint x coint_rank)
  • ndarray (p x K x K)
  • ndarray (p x K x K)
  • ndarray (p x k x k)
  • ndarray (p x k x k)
  • ndarray (pq x pq)
  • ndarray (pq x pq)
  • ndarray (steps x neqs)
  • ndarray (steps x neqs)
  • ndarray (steps x self.exog.shape[1])
  • ndarray (steps x self.exog.shape[1])
  • ndarray (subclass)
  • ndarray (subclass)
  • ndarray (trend_coefs.shape[1] x neqs)
  • ndarray (trend_coefs.shape[1] x neqs)
  • ndarray of ints, shape (nobs, K)
  • ndarray of ints, shape (nobs, K)
  • ndarray or tuple of 2 ndarray's
  • ndarray or tuple of 2 ndarray's
  • ndarray, (K * (J-1),)
  • ndarray, (K * (J-1),)
  • ndarray, (k_constraints, 2)
  • ndarray, (k_constraints, 2)
  • ndarray, (k_vars, k_vars)
  • ndarray, (k_vars, k_vars)
  • ndarray, (k_vars,) or scalar
  • ndarray, (k_vars,) or scalar
  • ndarray, (len(frac), len(idx))
  • ndarray, (len(frac), len(idx))
  • ndarray, (len(x), len(idx))
  • ndarray, (len(x), len(idx))
  • ndarray, (n, len(m))
  • ndarray, (n, len(m))
  • ndarray, (n_groups,)
  • ndarray, (n_groups,)
  • ndarray, (nlags+1,)
  • ndarray, (nlags+1,)
  • ndarray, (nobs, k_vars_fe)
  • ndarray, (nobs, k_vars_fe)
  • ndarray, (nobs, k_vars_re)
  • ndarray, (nobs, k_vars_re)
  • ndarray, (nobs, n_groups)
  • ndarray, (nobs, n_groups)
  • ndarray, (nobs,)
  • ndarray, (nobs,)
  • ndarray, (nobs,) or (nobs, k_vars)
  • ndarray, (nobs,) or (nobs, k_vars)
  • ndarray, (optional)
  • ndarray, (optional)
  • ndarray, 2d, (nm*(nm-1)/2, nm)
  • ndarray, 2d, (nm*(nm-1)/2, nm)
  • ndarray, 2d, (nm-1, nm)
  • ndarray, 2d, (nm-1, nm)
  • ndarray, 2d, (nobs, nfactors)
  • ndarray, 2d, (nobs, nfactors)
  • ndarray, 2d, (nobs, nvars)
  • ndarray, 2d, (nobs, nvars)
  • ndarray, 2d, symmetric
  • ndarray, 2d, symmetric
  • ndarray, int8, 2d (nobs, n_groups)
  • ndarray, int8, 2d (nobs, n_groups)
  • ndarray, optional
  • ndarray, optional
  • ndarray, shape (nobs, K)
  • ndarray, shape (nobs, K)
  • ndarray-like
  • ndarray-like
  • ndarray_1d
  • ndarray_1d
  • neqs x neqs array, default to largest for each
  • neqs x neqs array, default to largest for each
  • neqs x neqs mask array with known parameters masked
  • neqs x neqs mask array with known parameters masked
  • neqs x neqs np.ndarray with unknown parameters marked with 'E'
  • neqs x neqs np.ndarray with unknown parameters marked with 'E'
  • neqs x neqs np.ndarry with unknown parameters marked with 'E'
  • neqs x neqs np.ndarry with unknown parameters marked with 'E'
  • nested tuples and lists
  • nested tuples and lists
  • new instance of class
  • new instance of class
  • non-negative real
  • non-negative real
  • non-negative scalar or numpy array (same size as parameters)
  • non-negative scalar or numpy array (same size as parameters)
  • not used
  • not used
  • not used yet
  • not used yet
  • not used,
  • not used,
  • nothing returned, modifications are inplace
  • nothing returned, modifications are inplace
  • np.dtype, optional
  • np.dtype, optional
  • np.ndarray
  • np.ndarray
  • np.ndarray of Booleans
  • np.ndarray of Booleans
  • number
  • number
  • numeric
  • numeric
  • numpy array (2D)
  • numpy array (2D)
  • numpy matrix (default identity matrix)
  • numpy matrix (default identity matrix)
  • numpy.array
  • numpy.array
  • numpy.array (default) or pandas.DataFrame
  • numpy.array (default) or pandas.DataFrame
  • obj
  • obj
  • optional keywords
  • optional keywords
  • optional keywords for power function
  • optional keywords for power function
  • pandas.dataframe
  • pandas.dataframe
  • pd.Index
  • pd.Index
  • pd.Index or None
  • pd.Index or None
  • pd.Index, optional
  • pd.Index, optional
  • positive integer
  • positive integer
  • positive real
  • positive real
  • positive real scalar
  • positive real scalar
  • pvalue
  • pvalue
  • real
  • real
  • real array-valued function
  • real array-valued function
  • real valued function
  • real valued function
  • real-valued function
  • real-valued function
  • regression result instance
  • regression result instance
  • regression results instance
  • regression results instance
  • result instance
  • result instance
  • results instance
  • results instance
  • scalar
  • scalar
  • scalar or 1-D ndarray of shape (K,)
  • scalar or 1-D ndarray of shape (K,)
  • scalar or 1-D ndarray, shape (K,)
  • scalar or 1-D ndarray, shape (K,)
  • scalar or array_like (optional)
  • scalar or array_like (optional)
  • scalar, optional
  • scalar, optional
  • scipy.stats distribution
  • scipy.stats distribution
  • scipy.stats.distribution
  • scipy.stats.distribution
  • see Parameters
  • see Parameters
  • see endog in Parameters
  • see endog in Parameters
  • see delta_x in Parameters
  • see delta_x in Parameters
  • see delta_y_1_T in Parameters
  • see delta_y_1_T in Parameters
  • see y_lag1 in Parameters
  • see y_lag1 in Parameters
  • sequence (length k)
  • sequence (length k)
  • sequence of data or cells
  • sequence of data or cells
  • sequence of ndarrays
  • sequence of ndarrays
  • sequence of scalar or str, optional
  • sequence of scalar or str, optional
  • sparse.coo_matrix
  • sparse.coo_matrix
  • square array
  • square array
  • square symmetric ndarray
  • square symmetric ndarray
  • statespace.kalman_filter.KalmanFilter
  • statespace.kalman_filter.KalmanFilter
  • statsmodels Principal Component Analysis instance
  • statsmodels Principal Component Analysis instance
  • statsmodels model
  • statsmodels model
  • statsmodels model class instance
  • statsmodels model class instance
  • statsmodels results instance or list of result instances
  • statsmodels results instance or list of result instances
  • str ('data' or 'header')
  • str ('data' or 'header')
  • str or Matplotlib Colormap instance, optional
  • str or Matplotlib Colormap instance, optional
  • str or None
  • str or None
  • str or None, optional
  • str or None, optional
  • str or filehandle
  • str or filehandle
  • str or generic Formula object
  • str or generic Formula object
  • str or int {"I","II","III"} or {1,2,3}
  • str or int {"I","II","III"} or {1,2,3}
  • str or offset
  • str or offset
  • str or patsy.model_desc
  • str or patsy.model_desc
  • str {"F", "Chisq", "Cp"} or None
  • str {"F", "Chisq", "Cp"} or None
  • str {"additive", "multiplicative"}
  • str {"additive", "multiplicative"}
  • str {"aq","qm", "other"}
  • str {"aq","qm", "other"}
  • str {"c", "ct", "ctt", "nc"}
  • str {"c", "ct", "ctt", "nc"}
  • str {"c", "nc", "ct", "ctt"}
  • str {"c", "nc", "ct", "ctt"}
  • str {"c","t","ct","ctt"}
  • str {"c","t","ct","ctt"}
  • str {"ls", "ssm"}
  • str {"ls", "ssm"}
  • str {"ml"}, default: "ml"
  • str {"ml"}, default: "ml"
  • str {"nc", "c", "ct", "ctt"}
  • str {"nc", "c", "ct", "ctt"}
  • str {"nc", "co", "ci", "lo", "li"}
  • str {"nc", "co", "ci", "lo", "li"}
  • str {'45', 's', 'r', q'} or None
  • str {'45', 's', 'r', q'} or None
  • str {'45', 's', 'r', q'} or None, optional
  • str {'45', 's', 'r', q'} or None, optional
  • str {'45','r','s','q'}
  • str {'45','r','s','q'}
  • str {'DFFITS', 'Cooks'}
  • str {'DFFITS', 'Cooks'}
  • str {'aic','bic','hic','t-stat'}
  • str {'aic','bic','hic','t-stat'}
  • str {'aic','bic','hqic','t-stat'}
  • str {'aic','bic','hqic','t-stat'}
  • str {'c', 'ct'}
  • str {'c', 'ct'}
  • str {'c', 'tc', 'ctt', 'nc'}
  • str {'c', 'tc', 'ctt', 'nc'}
  • str {'c','nc'}
  • str {'c','nc'}
  • str {'cmle', 'mle'}, optional
  • str {'cmle', 'mle'}, optional
  • str {'css-mle','mle','css'}
  • str {'css-mle','mle','css'}
  • str {'ex','sep','in'}
  • str {'ex','sep','in'}
  • str {'forward', 'backward', 'both', 'none'} or None
  • str {'forward', 'backward', 'both', 'none'} or None
  • str {'line', 'scatter', 'both'}, optional
  • str {'line', 'scatter', 'both'}, optional
  • str {'nc', 'c', 'ct'}
  • str {'nc', 'c', 'ct'}
  • str {'newton','nm','bfgs','powell','cg','ncg','basinhopping',
  • str {'newton','nm','bfgs','powell','cg','ncg','basinhopping',
  • str {'raise', 'add', 'skip'}
  • str {'raise', 'add', 'skip'}
  • str {"f", "wald"}
  • str {"f", "wald"}
  • str {"granger", "inst"}, default: "granger"
  • str {"granger", "inst"}, default: "granger"
  • str {"nc", "co", "ci", "lo", "li"}
  • str {"nc", "co", "ci", "lo", "li"}
  • str, datetime
  • str, datetime
  • str, defaults to 'brentq'
  • str, defaults to 'brentq'
  • str, optional
  • str, optional
  • str, {"trace", "maxeig"}, default: "trace"
  • str, {"trace", "maxeig"}, default: "trace"
  • string in ['nobs', 'effect_size', 'alpha']
  • string in ['nobs', 'effect_size', 'alpha']
  • string in ['norm', 'binom']
  • string in ['norm', 'binom']
  • string in ['normal']
  • string in ['normal']
  • string in ['two-sided', 'smaller', 'larger']
  • string in ['two-sided', 'smaller', 'larger']
  • string or HuberScale()
  • string or HuberScale()
  • string or None
  • string or None
  • string or array or callable
  • string or array or callable
  • string or callable
  • string or callable
  • string or filehandle
  • string or filehandle
  • string {'breakvar'} or None
  • string {'breakvar'} or None
  • string {'jarquebera'} or None
  • string {'jarquebera'} or None
  • string {'ljungbox','boxpierece'} or None
  • string {'ljungbox','boxpierece'} or None
  • string, 'increasing', 'decreasing' or 'two-sided'
  • string, 'increasing', 'decreasing' or 'two-sided'
  • string, 'pooled'
  • string, 'pooled'
  • string, 'pooled' or 'unequal'
  • string, 'pooled' or 'unequal'
  • string, 'two-sided' (default) or 'one-sided'
  • string, 'two-sided' (default) or 'one-sided'
  • string, 'two-sided' (default), 'larger', 'smaller'
  • string, 'two-sided' (default), 'larger', 'smaller'
  • string, default is 'bfgs'
  • string, default is 'bfgs'
  • string, defines method for robust
  • string, defines method for robust
  • string, kernel to use in the kernel density estimation for the
  • string, kernel to use in the kernel density estimation for the
  • string, method used to calculate the variance-covariance matrix
  • string, method used to calculate the variance-covariance matrix
  • string, optional
  • string, optional
  • string.
  • string.
  • structured array
  • structured array
  • str{'c', 'ct'}
  • str{'c', 'ct'}
  • str{'n','c','t','ct'} or iterable
  • str{'n','c','t','ct'} or iterable
  • str{'n','c','t','ct'} or iterable, optional
  • str{'n','c','t','ct'} or iterable, optional
  • table is attached
  • table is attached
  • tables are attached
  • tables are attached
  • tree
  • tree
  • tuple of None or ndarrays
  • tuple of None or ndarrays
  • tuple of dicts, optional
  • tuple of dicts, optional
  • tuple of lists, optional
  • tuple of lists, optional
  • tuple of two ndarrays
  • tuple of two ndarrays
  • tuple or array_like ([min, k_vars], [max, k_vars])
  • tuple or array_like ([min, k_vars], [max, k_vars])
  • tuple, (ar, ma)
  • tuple, (ar, ma)
  • tuple, (mu, ar, ma)
  • tuple, (mu, ar, ma)
  • tuple, 2 elements
  • tuple, 2 elements
  • tuple, optional
  • tuple, optional
  • type, optional
  • type, optional
  • unknown values of A and B matrix concatenated
  • unknown values of A and B matrix concatenated
  • var, optional
  • var, optional
  • vector length neqs, default to largest for each
  • vector length neqs, default to largest for each
  • vector-valued function
  • vector-valued function
  • {"add", "mul", "additive", "multiplicative", None}, optional
  • {"add", "mul", "additive", "multiplicative", None}, optional
  • {'AIC', 'BIC', 't-stat', None}
  • {'AIC', 'BIC', 't-stat', None}
  • {'MBD', 'BD2'}, optional
  • {'MBD', 'BD2'}, optional
  • {'aic', 'bic', 'hqic'}
  • {'aic', 'bic', 'hqic'}
  • {'aic', 'bic', 't-stat'}
  • {'aic', 'bic', 't-stat'}
  • {'aic', 'fpe', 'hqic', 'bic', None}
  • {'aic', 'fpe', 'hqic', 'bic', None}
  • {'approx', 'table'}, optional
  • {'approx', 'table'}, optional
  • {'approximate_diffuse','stationary','known'}, optional
  • {'approximate_diffuse','stationary','known'}, optional
  • {'bky', 'bh')
  • {'bky', 'bh')
  • {'bootstrap', 'montecarlo'}
  • {'bootstrap', 'montecarlo'}
  • {'both', 'left', 'right'}, optional
  • {'both', 'left', 'right'}, optional
  • {'c', 'nc', 'ct', 'ctt'}
  • {'c', 'nc', 'ct', 'ctt'}
  • {'c','ct','ctt','nc'}
  • {'c','ct','ctt','nc'}
  • {'cov', ...}
  • {'cov', ...}
  • {'diagonal', 'unstructured'}
  • {'diagonal', 'unstructured'}
  • {'diagonal', 'unstructured'}, optional
  • {'diagonal', 'unstructured'}, optional
  • {'eim', 'oim'}, optional
  • {'eim', 'oim'}, optional
  • {'expanding', 'rolling'}
  • {'expanding', 'rolling'}
  • {'f', 'wald'}
  • {'f', 'wald'}
  • {'filtered', 'smoothed'}, or None, optional
  • {'filtered', 'smoothed'}, or None, optional
  • {'full', 'drop-last', 'drop-first'}
  • {'full', 'drop-last', 'drop-first'}
  • {'goodman', 'sison-glaz'}, optional
  • {'goodman', 'sison-glaz'}, optional
  • {'guerrero', 'loglik'}
  • {'guerrero', 'loglik'}
  • {'harvey', 'approx'} or None, optional
  • {'harvey', 'approx'} or None, optional
  • {'indep', 'negcorr')
  • {'indep', 'negcorr')
  • {'left', 'right'}, optional
  • {'left', 'right'}, optional
  • {'mean', 'median'} or number
  • {'mean', 'median'} or number
  • {'mle'}
  • {'mle'}
  • {'naive'}
  • {'naive'}
  • {'nc', 'c', 't', 'ct'}
  • {'nc', 'c', 't', 'ct'}
  • {'nc', 'c'}, optional
  • {'nc', 'c'}, optional
  • {'nm', 'newton', 'bfgs', 'cg', 'ncg', 'powell'}
  • {'nm', 'newton', 'bfgs', 'cg', 'ncg', 'powell'}
  • {'norm', 'exp'}, optional
  • {'norm', 'exp'}, optional
  • {'ols'}
  • {'ols'}
  • {'opg','oim','approx'}, optional
  • {'opg','oim','approx'}, optional
  • {'s', 'd', 'c', 'z'}, optional
  • {'s', 'd', 'c', 'z'}, optional
  • {'s','d','c','z'}, optional
  • {'s','d','c','z'}, optional
  • {'scalar', 'diagonal', 'unstructured'}, optional
  • {'scalar', 'diagonal', 'unstructured'}, optional
  • {'sd', 'mad'}
  • {'sd', 'mad'}
  • {'standard', 'lutkepohl'}
  • {'standard', 'lutkepohl'}
  • {'ywunbiased', 'ywmle', 'ols'}
  • {'ywunbiased', 'ywmle', 'ols'}
  • {0,1}, optional
  • {0,1}, optional
  • {0.05, 0.01}
  • {0.05, 0.01}
  • {0.4, float} optional
  • {0.4, float} optional
  • {0.95, 0.99}
  • {0.95, 0.99}
  • {False, True}
  • {False, True}
  • {None, "hc0", "hc1", "hc2", "hc3"}
  • {None, "hc0", "hc1", "hc2", "hc3"}
  • {None, int}, optional
  • {None, int}, optional
  • {True, False, 'log', float}, optional
  • {True, False, 'log', float}, optional
  • {{prefix}}SimulationSmoother object
  • {{prefix}}SimulationSmoother object