|
|
|
|
- float, optional
- float, optional
|
- ndarray (neqs x
coint_rank )
- ndarray (neqs x
coint_rank )
|
- 'approx' (default) or 'asymp'
- 'approx' (default) or 'asymp'
|
- 'auto, 'size', or 'off'
- 'auto, 'size', or 'off'
|
- 'bartlett' or 'regression'
- 'bartlett' or 'regression'
|
- 'cluster' or 'hac' or False
- 'cluster' or 'hac' or False
|
- 'display' (default), 'raw' or 'strings'
- 'display' (default), 'raw' or 'strings'
|
- 'endog' or int
- 'endog' or int
|
- 'l1' or 'l1_cvxopt_cp'
- 'l1' or 'l1_cvxopt_cp'
|
- 'lagged', 'centered', or 'leading'
- 'lagged', 'centered', or 'leading'
|
- 'mean', 'linear', 'prob', optional.
- 'mean', 'linear', 'prob', optional.
|
- 'none', 'drop', or 'raise'
- 'none', 'drop', or 'raise'
|
- 'norm' or callable
- 'norm' or callable
|
- 'string', int, or None
- 'string', int, or None
|
- 'two_sided' (default), 'less' or 'greater'
- 'two_sided' (default), 'less' or 'greater'
|
- 'unbiased' (default) or 'mle'
- 'unbiased' (default) or 'mle'
|
|
- (k_ar x neqs x neqs)
- (k_ar x neqs x neqs)
|
|
- (optional) instance of ResultStore
- (optional) instance of ResultStore
|
- (optional), float or array
- (optional), float or array
|
- (optionsal), float or array
- (optionsal), float or array
|
|
|
- 1-D ndarray, shape (K,)
- 1-D ndarray, shape (K,)
|
|
|
|
|
- 1d array, (nparams,)
- 1d array, (nparams,)
|
|
|
- 1d or 2d array
- 1d or 2d array
|
|
|
- 2-D ndarray of ints, shape (nobs, K)
- 2-D ndarray of ints, shape (nobs, K)
|
|
|
- 2d array (N,1) (optional)
- 2d array (N,1) (optional)
|
- 2d array (N,K)
- 2d array (N,K)
|
- 2d array, optional
- 2d array, optional
|
|
|
|
|
CointRankResults
CointRankResults
|
|
|
|
statsmodels.tsa.vector_ar.hypothesis_test_results.CausalityTestResults
statsmodels.tsa.vector_ar.hypothesis_test_results.CausalityTestResults
|
statsmodels.tsa.vector_ar.hypothesis_test_results.NormalityTestResults
statsmodels.tsa.vector_ar.hypothesis_test_results.NormalityTestResults
|
statsmodels.tsa.vector_ar.hypothesis_test_results.WhitenessTestResults
statsmodels.tsa.vector_ar.hypothesis_test_results.WhitenessTestResults
|
statsmodels.tsa.vector_ar.var_model.LagOrderResults
statsmodels.tsa.vector_ar.var_model.LagOrderResults
|
|
- A DiscreteModel instance
- A DiscreteModel instance
|
- A scipy.stats or statsmodels distribution
- A scipy.stats or statsmodels distribution
|
- AR Model instance
- AR Model instance
|
- AR model instance
- AR model instance
|
- ARMA instance
- ARMA instance
|
- ARMAResults instance
- ARMAResults instance
|
- AllPairsResults instance
- AllPairsResults instance
|
|
- Axes instance
- Axes instance
|
|
|
|
|
- ContrastResult instance
- ContrastResult instance
|
- ContrastResults instance
- ContrastResults instance
|
- CovariancePenalty object
- CovariancePenalty object
|
- CustomKernel object
- CustomKernel object
|
|
- DataFrame or pandas Styler instance
- DataFrame or pandas Styler instance
|
|
|
- Dataset instance
- Dataset instance
|
- DescStat instance
- DescStat instance
|
|
- Discrepancy of observed values
- Discrepancy of observed values
|
- DiscreteResults instance
- DiscreteResults instance
|
- DistributedModel class instance
- DistributedModel class instance
|
- DynamicFactor instance
- DynamicFactor instance
|
- ExponentialSmoothing class
- ExponentialSmoothing class
|
- ExponentialSmoothing instance
- ExponentialSmoothing instance
|
|
|
- FactorResults instance
- FactorResults instance
|
- False or float in (0, 1)
- False or float in (0, 1)
|
|
- FilterResults
- FilterResults
|
- Float (non-negative)
- Float (non-negative)
|
|
|
- GEEResults instance
- GEEResults instance
|
- GMMResult instance
- GMMResult instance
|
- HamiltonFilterResults or KimSmootherResults instance
- HamiltonFilterResults or KimSmootherResults instance
|
- HdrResults instance
- HdrResults instance
|
|
|
- HoltWintersResults class
- HoltWintersResults class
|
|
|
|
- Integer or 'defined_by_method'
- Integer or 'defined_by_method'
|
|
- KDEMultivariate instance
- KDEMultivariate instance
|
- KalmanFilter
- KalmanFilter
|
- KalmanFilter instance
- KalmanFilter instance
|
- KalmanSmoother
- KalmanSmoother
|
- Kernel Class
- Kernel Class
|
- LagOrderResults
- LagOrderResults
|
- List of strings of length equal to the number of parameters
- List of strings of length equal to the number of parameters
|
- MLEModel instance
- MLEModel instance
|
- MarkovAutoregression instance
- MarkovAutoregression instance
|
- MarkovRegression instance
- MarkovRegression instance
|
- MarkovSwitching instance
- MarkovSwitching instance
|
- MarkovSwitchingModel
- MarkovSwitchingModel
|
|
- Matplotlib AxesSubplot instance
- Matplotlib AxesSubplot instance
|
- Matplotlib AxesSubplot instance, optional
- Matplotlib AxesSubplot instance, optional
|
- Matplotlib Figure instance, optional
- Matplotlib Figure instance, optional
|
- Matplotlib Figure object
- Matplotlib Figure object
|
- Matplotlib LinearSegmentedColormap instance, optional
- Matplotlib LinearSegmentedColormap instance, optional
|
- Matplotlib axes instance
- Matplotlib axes instance
|
- Matplotlib axes instance, optional
- Matplotlib axes instance, optional
|
- Matplotlib figure instance
- Matplotlib figure instance
|
- Matplotlib figure instance, optional
- Matplotlib figure instance, optional
|
- MixedLMParams object
- MixedLMParams object
|
- MixedLMParams or array-like
- MixedLMParams or array-like
|
- MixedLMParams, or array-like.
- MixedLMParams, or array-like.
|
|
- Model instance
- Model instance
|
- Model results instance
- Model results instance
|
|
- None or 1-D ndarray
- None or 1-D ndarray
|
|
- None or array
- None or array
|
|
- None or axis instance
- None or axis instance
|
- None or dict
- None or dict
|
- None or family instance
- None or family instance
|
- None or float
- None or float
|
- None or float in (0,1)
- None or float in (0,1)
|
|
- None or function
- None or function
|
|
- None or integer or float in intervall (0,1)
- None or integer or float in intervall (0,1)
|
- None or joblib parallel_backend object
- None or joblib parallel_backend object
|
- None or list of int
- None or list of int
|
|
- None or list of smoother instances
- None or list of smoother instances
|
|
- None or matplotlib axis instance
- None or matplotlib axis instance
|
- None or matplotlib figure instance
- None or matplotlib figure instance
|
|
|
- None or tuple
- None or tuple
|
- None or tuple of dicts
- None or tuple of dicts
|
- None or tuple of int (nrows, ncols)
- None or tuple of int (nrows, ncols)
|
- None, 'dfk1', or 'dfk2'
- None, 'dfk1', or 'dfk2'
|
- None, 'mean', or function
- None, 'mean', or function
|
|
|
|
|
|
- NormalityTestResults
- NormalityTestResults
|
- OLS result instance
- OLS result instance
|
- OLS results instance
- OLS results instance
|
- PHReg model instance
- PHReg model instance
|
|
|
|
- Record Array
- Record Array
|
- RecursiveLS instance
- RecursiveLS instance
|
- Regression Results instance
- Regression Results instance
|
- RegressionEffects instance
- RegressionEffects instance
|
- RegressionFDR instance
- RegressionFDR instance
|
- RegressionResults instance
- RegressionResults instance
|
- Representation
- Representation
|
- Result instance
- Result instance
|
- ResultStore, optional
- ResultStore, optional
|
- Results instance
- Results instance
|
|
- RobustNorm, optional
- RobustNorm, optional
|
- RootResult (optional)
- RootResult (optional)
|
- SARIMAX instance
- SARIMAX instance
|
|
- SimpleExpSmoothing class
- SimpleExpSmoothing class
|
|
- SimpleTable instance
- SimpleTable instance
|
- StataWriter instance
- StataWriter instance
|
|
- Summary instance
- Summary instance
|
- SummaryTable
- SummaryTable
|
- TODO: not implemented yet
- TODO: not implemented yet
|
- TableDist object.
- TableDist object.
|
- True or False
- True or False
|
- TukeyHSDResults instance
- TukeyHSDResults instance
|
- UnobservedComponents instance
- UnobservedComponents instance
|
- VAR instance
- VAR instance
|
- VAR model instance
- VAR model instance
|
- VARMAX instance
- VARMAX instance
|
- VARResults or VECMResults
- VARResults or VECMResults
|
- VARResults or statsmodels.tsa.vecm.vecm.VECMResults
- VARResults or statsmodels.tsa.vecm.vecm.VECMResults
|
- WhitenessTestResults
- WhitenessTestResults
|
ProbPlot instance, array-like, or None, optional
ProbPlot instance, array-like, or None, optional
|
statsmodels.tsa.arima.ARMA instance
statsmodels.tsa.arima.ARMA instance
|
- a dict of slices
- a dict of slices
|
- a link function instance
- a link function instance
|
- a link instance, optional
- a link instance, optional
|
- a list of figure handles
- a list of figure handles
|
|
|
- a variance function
- a variance function
|
|
|
- array (1+nobs,nvars)
- array (1+nobs,nvars)
|
- array (horiz, nvars)
- array (horiz, nvars)
|
- array (nlags, nvar, nvar)
- array (nlags, nvar, nvar)
|
- array (nlags,nvars,nvars)
- array (nlags,nvars,nvars)
|
- array (nlags-1, nvar, nvar)
- array (nlags-1, nvar, nvar)
|
- array (nmoms, nmoms)
- array (nmoms, nmoms)
|
- array (nobs+horiz, nvars)
- array (nobs+horiz, nvars)
|
- array (nobs, 2)
- array (nobs, 2)
|
- array (nobs,nchoices)
- array (nobs,nchoices)
|
- array (nobs,nvars)
- array (nobs,nvars)
|
- array (nrepl,)
- array (nrepl,)
|
- array (optional)
- array (optional)
|
- array 1d, (nobs+?,)
- array 1d, (nobs+?,)
|
|
|
|
|
|
- array of shape given by size
- array of shape given by size
|
|
- array or None
- array or None
|
|
|
|
|
- array or pd.DataFrame
- array or pd.DataFrame
|
- array, (nlags,nvars,nvars)
- array, (nlags,nvars,nvars)
|
- array, (nobs, nchoices)
- array, (nobs, nchoices)
|
- array, (nobs, nobs)
- array, (nobs, nobs)
|
- array, (nobs, nre) or (nobs,)
- array, (nobs, nre) or (nobs,)
|
- array, (nobs,nvars,nvars)
- array, (nobs,nvars,nvars)
|
- array, (nre+1,)
- array, (nre+1,)
|
|
|
|
|
|
|
- array, optional
- array, optional
|
|
- array, shape () or (1,) or (K,)
- array, shape () or (1,) or (K,)
|
- array, shape (M, N)
- array, shape (M, N)
|
- array, shape (M,) or (M, K)
- array, shape (M,) or (M, K)
|
- array, shape (N, M)
- array, shape (N, M)
|
- array, shape (N,) or (N, K) depending on shape of b
- array, shape (N,) or (N, K) depending on shape of b
|
- array, shape (min(M,N),)
- array, shape (min(M,N),)
|
|
- array-like (
rank + 1 if rank < neqs else rank )
- array-like (
rank + 1 if rank < neqs else rank )
|
- array-like (
rank +1 if rank < neqs else rank )
- array-like (
rank +1 if rank < neqs else rank )
|
- array-like (length must be divisible by
ncut )
- array-like (length must be divisible by
ncut )
|
- array-like (nobs_tot x neqs)
- array-like (nobs_tot x neqs)
|
|
|
- array-like of datetime, optional
- array-like of datetime, optional
|
|
- array-like, (nobs,) or (nobs, k_vars)
- array-like, (nobs,) or (nobs, k_vars)
|
|
|
|
- array-like, optional An array of entry times for handling
- array-like, optional An array of entry times for handling
|
- array-like, optional after fit has been called
- array-like, optional after fit has been called
|
|
|
|
|
|
- array_lik, 1d
- array_lik, 1d
|
|
- array_like (n_samples, k_vars)
- array_like (n_samples, k_vars)
|
|
|
|
|
- array_like or None, optional
- array_like or None, optional
|
|
- array_like or instance of DescrStatsW
- array_like or instance of DescrStatsW
|
|
|
|
|
|
|
|
|
- array_like, 1d, (nar+nma+1,)
- array_like, 1d, (nar+nma+1,)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- array_like, same ndim as x, currently 2d
- array_like, same ndim as x, currently 2d
|
|
|
- array_likes, optional
- array_likes, optional
|
|
- arraylike or None
- arraylike or None
|
- axes, optional
- axes, optional
|
- axis or figure instance
- axis or figure instance
|
|
- bool (default is True)
- bool (default is True)
|
- bool , optional
- bool , optional
|
- bool or None
- bool or None
|
|
|
|
|
|
- bool or tuple of scalars, optional
- bool or tuple of scalars, optional
|
- bool or tuple, optional
- bool or tuple, optional
|
|
- bool, default False
- bool, default False
|
- bool, default is True
- bool, default is True
|
- bool, default: False
- bool, default: False
|
- bool, default: True
- bool, default: True
|
|
- bool, optional
- bool, optional
|
- bool, optional (default True)
- bool, optional (default True)
|
|
|
|
- boolean, default True
- boolean, default True
|
- boolean, default: False
- boolean, default: False
|
- boolean, int, str, or datetime, optional
- boolean, int, str, or datetime, optional
|
- boolean, optional
- boolean, optional
|
- boolean,optional
- boolean,optional
|
- boot, optional
- boot, optional
|
|
- callable (default is numpy.exp)
- callable (default is numpy.exp)
|
- callable (default is numpy.log)
- callable (default is numpy.log)
|
- callable callback(xk)
- callable callback(xk)
|
- callable callback(xk), optional
- callable callback(xk), optional
|
- callable or float
- callable or float
|
|
- class instance
- class instance
|
|
- class, optional
- class, optional
|
- continuous distribution
- continuous distribution
|
|
- depends on cov_type
- depends on cov_type
|
|
- dict or None
- dict or None
|
- dict or None, optional
- dict or None, optional
|
|
- dict, optional
- dict, optional
|
|
|
- dict-like or None
- dict-like or None
|
|
|
|
|
|
- discrete frozen distribution
- discrete frozen distribution
|
- distribution instance
- distribution instance
|
- distribution instance with fit_fr method
- distribution instance with fit_fr method
|
|
|
- extra arguments
- extra arguments
|
- extra keyword arguments
- extra keyword arguments
|
|
- file path or buffer
- file path or buffer
|
|
- filename or file handle
- filename or file handle
|
- fitted linear model results instance
- fitted linear model results instance
|
|
- float (for general case will be array)
- float (for general case will be array)
|
- float (0 < signif < 1)
- float (0 < signif < 1)
|
- float (default 1e-6)
- float (default 1e-6)
|
- float (default is 0.5)
- float (default is 0.5)
|
- float (default is 0.8)
- float (default is 0.8)
|
- float (default: alpha = 0.05)
- float (default: alpha = 0.05)
|
- float (negative) or None
- float (negative) or None
|
- float (optional)
- float (optional)
|
- float (positive) or None
- float (positive) or None
|
- float 0 <
alpha < 1, default 0.05
- float 0 <
alpha < 1, default 0.05
|
- float between 0 and 1, default 5 %
- float between 0 and 1, default 5 %
|
- float between 0 and 1, optional
- float between 0 and 1, optional
|
- float in (0, 1)
- float in (0, 1)
|
- float in (0, 1), optional
- float in (0, 1), optional
|
- float in (0,1)
- float in (0,1)
|
- float in interval (0,1)
- float in interval (0,1)
|
- float or 'auto' (default = 'auto')
- float or 'auto' (default = 'auto')
|
- float or 'med', 'min', 'max'
- float or 'med', 'min', 'max'
|
- float or None
- float or None
|
- float or None, optional
- float or None, optional
|
|
|
- float or array, optional.
- float or array, optional.
|
|
|
- float or inf
- float or inf
|
|
|
|
|
- float, 0 <
alpha < 1
- float, 0 <
alpha < 1
|
- float, 0 <
alpha < 1 or None
- float, 0 <
alpha < 1 or None
|
- float, 0 <
signif < 1
- float, 0 <
signif < 1
|
- float, 0 <
signif < 1, default 5 %
- float, 0 <
signif < 1, default 5 %
|
- float, 0 <=
pvalue <= 1
- float, 0 <=
pvalue <= 1
|
- float, a small positive number
- float, a small positive number
|
|
- float, between 0 and 1
- float, between 0 and 1
|
- float, default 1.96
- float, default 1.96
|
- float, default 5%
- float, default 5%
|
|
- float, optional
- float, optional
|
- float, {0.1, 0.05, 0.01}, default: 0.05
- float, {0.1, 0.05, 0.01}, default: 0.05
|
- formula expression or tuple
- formula expression or tuple
|
|
- function (defualt None)
- function (defualt None)
|
- function (key) -> dict, optional
- function (key) -> dict, optional
|
- function (key) -> string, optional
- function (key) -> string, optional
|
- function mapping reals to positive reals
- function mapping reals to positive reals
|
|
- function, default: kernel_rbf
- function, default: kernel_rbf
|
- function, optional
- function, optional
|
- function, random number generator
- function, random number generator
|
- generalized_linear_model.PredictionResults
- generalized_linear_model.PredictionResults
|
|
- generator or None
- generator or None
|
|
|
- instance (optional)
- instance (optional)
|
|
- instance of (GenericLikelihood ?)Result class
- instance of (GenericLikelihood ?)Result class
|
- instance of Bunch with
- instance of Bunch with
|
- instance of CompareMeans
- instance of CompareMeans
|
- instance of GMMResults
- instance of GMMResults
|
- instance of LikelihoodResults
- instance of LikelihoodResults
|
- instance of MVNormal
- instance of MVNormal
|
- instance of MVT
- instance of MVT
|
- instance of RegressionResults
- instance of RegressionResults
|
- instance of SimpleTable
- instance of SimpleTable
|
- instance of a distribution class
- instance of a distribution class
|
- instance of result class
- instance of result class
|
|
- int (0 <=
rank <= neqs )
- int (0 <=
rank <= neqs )
|
- int (default is 0)
- int (default is 0)
|
- int (default is 2)
- int (default is 2)
|
- int (default: 1)
- int (default: 1)
|
- int (optional, default=1)
- int (optional, default=1)
|
|
|
|
- int in {2, ..., 10}
- int in {2, ..., 10}
|
- int or 'cue'
- int or 'cue'
|
- int or 'freq', optional
- int or 'freq', optional
|
|
- int or None, default: None
- int or None, default: None
|
- int or None, optional
- int or None, optional
|
|
|
|
- int or bin edges
- int or bin edges
|
|
|
- int or np.e, optional
- int or np.e, optional
|
- int or np.inf
- int or np.inf
|
|
|
|
- int or str or sequence of int or str or None, default: None
- int or str or sequence of int or str or None, default: None
|
|
- int or str {1,2,3} or {"I","II","III"}
- int or str {1,2,3} or {"I","II","III"}
|
|
|
|
- int, 0 <=
coint_rank <= neqs
- int, 0 <=
coint_rank <= neqs
|
|
|
- int, default 1
- int, default 1
|
- int, default 100
- int, default 100
|
- int, default 1000
- int, default 1000
|
- int, default 500
- int, default 500
|
- int, default None
- int, default None
|
- int, default: 0
- int, default: 0
|
|
- int, nonnegative
- int, nonnegative
|
- int, optiona
- int, optiona
|
- int, optional
- int, optional
|
- int, optional0
- int, optional0
|
- int, str, or datetime
- int, str, or datetime
|
- int, str, or datetime, optional
- int, str, or datetime, optional
|
|
- integer (default 501)
- integer (default 501)
|
- integer (default: 0)
- integer (default: 0)
|
|
|
|
- integer, optional
- integer, optional
|
|
- iterable of DataFrames
- iterable of DataFrames
|
- iterable or iterable of iterables, optional
- iterable or iterable of iterables, optional
|
|
- kalman_filter.PredictionResults
- kalman_filter.PredictionResults
|
- kalman_filter.PredictionResults instance
- kalman_filter.PredictionResults instance
|
- keys for term_slices
- keys for term_slices
|
- keyword arguments
- keyword arguments
|
|
|
- linear_model.PredictionResults
- linear_model.PredictionResults
|
- link function or None
- link function or None
|
|
- list (n_samples,)
- list (n_samples,)
|
|
- list ? check
- list ? check
|
- list of SimpleTable
- list of SimpleTable
|
- list of SimpleTable instances
- list of SimpleTable instances
|
- list of arrays
- list of arrays
|
|
|
- list of floats between 0 and 1, optional
- list of floats between 0 and 1, optional
|
|
- list of length 2
- list of length 2
|
- list of lists or 2d array (not matrix!)
- list of lists or 2d array (not matrix!)
|
- list of mu, mc2, skew, kurt
- list of mu, mc2, skew, kurt
|
- list of ndarrays
- list of ndarrays
|
- list of pairs
- list of pairs
|
|
- list of str or None
- list of str or None
|
- list of str, optional
- list of str, optional
|
|
|
|
|
|
|
- list of units
- list of units
|
- list or None
- list or None
|
- list or None, optional
- list or None, optional
|
|
|
|
- list, length s+1
- list, length s+1
|
- list, optional
- list, optional
|
|
|
|
- marginal effects instance
- marginal effects instance
|
- matplotlib Axes instance
- matplotlib Axes instance
|
- matplotlib Figure
- matplotlib Figure
|
- matplotlib Figure instance
- matplotlib Figure instance
|
- matplotlib axes
- matplotlib axes
|
- matplotlib axes instance
- matplotlib axes instance
|
- matplotlib axes object
- matplotlib axes object
|
- matplotlib axis, optional
- matplotlib axis, optional
|
- matplotlib figure
- matplotlib figure
|
- matplotlib figure instance
- matplotlib figure instance
|
- matplotlib.Axes, optional
- matplotlib.Axes, optional
|
- matplotlib.Figure
- matplotlib.Figure
|
- matplotlib.axes
- matplotlib.axes
|
- matplotlib.axes, optional
- matplotlib.axes, optional
|
- model class, optional
- model class, optional
|
- model instance
- model instance
|
|
- model results instance
- model results instance
|
|
|
- nd_array, (n_cat, n_cat)
- nd_array, (n_cat, n_cat)
|
- nd_array, (n_rows, n_cat)
- nd_array, (n_rows, n_cat)
|
|
- ndarray (#(determinist. terms inside the coint. rel.) x
coint_rank )
- ndarray (#(determinist. terms inside the coint. rel.) x
coint_rank )
|
- ndarray (1 x
coint_rank )
- ndarray (1 x
coint_rank )
|
- ndarray (1 x neqs) or (neqs)
- ndarray (1 x neqs) or (neqs)
|
|
- ndarray (Kp + 1) x K
- ndarray (Kp + 1) x K
|
|
|
|
- ndarray (exog_coint.shape[1] x
coint_rank ) or None
- ndarray (exog_coint.shape[1] x
coint_rank ) or None
|
|
- ndarray (k x k), lower triangular
- ndarray (k x k), lower triangular
|
- ndarray (k x k), optional
- ndarray (k x k), optional
|
- ndarray (k_ar x neqs x neqs)
- ndarray (k_ar x neqs x neqs)
|
- ndarray (k_ar x neqs)
- ndarray (k_ar x neqs)
|
- ndarray (k_ar_diff*neqs x nobs)
- ndarray (k_ar_diff*neqs x nobs)
|
- ndarray (k_vars, k_vars)
- ndarray (k_vars, k_vars)
|
- ndarray (k_vars, k_vars) or scalar
- ndarray (k_vars, k_vars) or scalar
|
- ndarray (len_endog x n_seasons-1)
- ndarray (len_endog x n_seasons-1)
|
- ndarray (length k)
- ndarray (length k)
|
|
- ndarray (maxn x k x k)
- ndarray (maxn x k x k)
|
- ndarray (maxn x neqs x neqs)
- ndarray (maxn x neqs x neqs)
|
|
- ndarray (neqs x #(deterministic terms outside the coint. rel.))
- ndarray (neqs x #(deterministic terms outside the coint. rel.))
|
- ndarray (neqs x 1) or (neqs x 0)
- ndarray (neqs x 1) or (neqs x 0)
|
- ndarray (neqs x
coint_rank )
- ndarray (neqs x
coint_rank )
|
- ndarray (neqs x det. terms outside the coint. relation)
- ndarray (neqs x det. terms outside the coint. relation)
|
- ndarray (neqs x exog_coefs.shape[1])
- ndarray (neqs x exog_coefs.shape[1])
|
- ndarray (neqs x neqs)
- ndarray (neqs x neqs)
|
- ndarray (neqs x neqs), optional
- ndarray (neqs x neqs), optional
|
- ndarray (neqs x neqs*(k_ar-1))
- ndarray (neqs x neqs*(k_ar-1))
|
- ndarray (neqs x nobs)
- ndarray (neqs x nobs)
|
- ndarray (neqs x nobs_tot)
- ndarray (neqs x nobs_tot)
|
- ndarray (neqs x number_of_deterministic_terms)
- ndarray (neqs x number_of_deterministic_terms)
|
- ndarray (neqs x seasons)
- ndarray (neqs x seasons)
|
- ndarray (neqs**2 * k_ar x neqs**2 * k_ar)
- ndarray (neqs**2 * k_ar x neqs**2 * k_ar)
|
- ndarray (neqs+num_det_coef_coint x
coint_rank )
- ndarray (neqs+num_det_coef_coint x
coint_rank )
|
- ndarray (nobs x neqs)
- ndarray (nobs x neqs)
|
|
- ndarray (nobs,) or (nobs, k_var)
- ndarray (nobs,) or (nobs, k_var)
|
- ndarray (nobs,) or (nobs, nobs)
- ndarray (nobs,) or (nobs, nobs)
|
- ndarray (nobs_tot x #det_terms) or None, default: None
- ndarray (nobs_tot x #det_terms) or None, default: None
|
- ndarray (nobs_tot x #det_terms_coint) or None, default: None
- ndarray (nobs_tot x #det_terms_coint) or None, default: None
|
|
|
- ndarray (num_det_coef_coint x
coint_rank )
- ndarray (num_det_coef_coint x
coint_rank )
|
- ndarray (p x K x K)
- ndarray (p x K x K)
|
- ndarray (p x k x k)
- ndarray (p x k x k)
|
|
- ndarray (pq x pq)
- ndarray (pq x pq)
|
- ndarray (steps x neqs)
- ndarray (steps x neqs)
|
- ndarray (steps x self.exog.shape[1])
- ndarray (steps x self.exog.shape[1])
|
- ndarray (subclass)
- ndarray (subclass)
|
- ndarray (trend_coefs.shape[1] x neqs)
- ndarray (trend_coefs.shape[1] x neqs)
|
|
|
- ndarray of ints, shape (nobs, K)
- ndarray of ints, shape (nobs, K)
|
|
|
|
|
|
|
|
- ndarray or tuple of 2 ndarray's
- ndarray or tuple of 2 ndarray's
|
|
- ndarray, (K * (J-1),)
- ndarray, (K * (J-1),)
|
|
|
- ndarray, (k_constraints, 2)
- ndarray, (k_constraints, 2)
|
- ndarray, (k_vars, k_vars)
- ndarray, (k_vars, k_vars)
|
- ndarray, (k_vars,) or scalar
- ndarray, (k_vars,) or scalar
|
- ndarray, (len(frac), len(idx))
- ndarray, (len(frac), len(idx))
|
- ndarray, (len(x), len(idx))
- ndarray, (len(x), len(idx))
|
- ndarray, (n, len(m))
- ndarray, (n, len(m))
|
|
- ndarray, (n_groups,)
- ndarray, (n_groups,)
|
- ndarray, (nlags+1,)
- ndarray, (nlags+1,)
|
- ndarray, (nobs, k_vars_fe)
- ndarray, (nobs, k_vars_fe)
|
- ndarray, (nobs, k_vars_re)
- ndarray, (nobs, k_vars_re)
|
- ndarray, (nobs, n_groups)
- ndarray, (nobs, n_groups)
|
|
- ndarray, (nobs,) or (nobs, k_vars)
- ndarray, (nobs,) or (nobs, k_vars)
|
- ndarray, (optional)
- ndarray, (optional)
|
|
|
|
|
- ndarray, 2d, (nm*(nm-1)/2, nm)
- ndarray, 2d, (nm*(nm-1)/2, nm)
|
- ndarray, 2d, (nm-1, nm)
- ndarray, 2d, (nm-1, nm)
|
- ndarray, 2d, (nobs, nfactors)
- ndarray, 2d, (nobs, nfactors)
|
- ndarray, 2d, (nobs, nvars)
- ndarray, 2d, (nobs, nvars)
|
- ndarray, 2d, symmetric
- ndarray, 2d, symmetric
|
|
- ndarray, int8, 2d (nobs, n_groups)
- ndarray, int8, 2d (nobs, n_groups)
|
|
- ndarray, optional
- ndarray, optional
|
|
- ndarray, shape (nobs, K)
- ndarray, shape (nobs, K)
|
- ndarray-like
- ndarray-like
|
|
- neqs x neqs array, default to largest for each
- neqs x neqs array, default to largest for each
|
- neqs x neqs mask array with known parameters masked
- neqs x neqs mask array with known parameters masked
|
- neqs x neqs np.ndarray with unknown parameters marked with 'E'
- neqs x neqs np.ndarray with unknown parameters marked with 'E'
|
- neqs x neqs np.ndarry with unknown parameters marked with 'E'
- neqs x neqs np.ndarry with unknown parameters marked with 'E'
|
- nested tuples and lists
- nested tuples and lists
|
- new instance of class
- new instance of class
|
- non-negative real
- non-negative real
|
- non-negative scalar or numpy array (same size as parameters)
- non-negative scalar or numpy array (same size as parameters)
|
|
- not used yet
- not used yet
|
|
- nothing returned, modifications are inplace
- nothing returned, modifications are inplace
|
- np.dtype, optional
- np.dtype, optional
|
|
- np.ndarray of Booleans
- np.ndarray of Booleans
|
|
|
- numpy array (2D)
- numpy array (2D)
|
|
- numpy matrix (default identity matrix)
- numpy matrix (default identity matrix)
|
|
- numpy.array (default) or pandas.DataFrame
- numpy.array (default) or pandas.DataFrame
|
|
|
|
|
|
- optional keywords
- optional keywords
|
- optional keywords for power function
- optional keywords for power function
|
|
|
|
- pandas.dataframe
- pandas.dataframe
|
|
- pd.Index or None
- pd.Index or None
|
- pd.Index, optional
- pd.Index, optional
|
|
- positive real
- positive real
|
- positive real scalar
- positive real scalar
|
|
|
|
- real array-valued function
- real array-valued function
|
- real valued function
- real valued function
|
- real-valued function
- real-valued function
|
- regression result instance
- regression result instance
|
- regression results instance
- regression results instance
|
- result instance
- result instance
|
- results instance
- results instance
|
|
- scalar or 1-D ndarray of shape (K,)
- scalar or 1-D ndarray of shape (K,)
|
- scalar or 1-D ndarray, shape (K,)
- scalar or 1-D ndarray, shape (K,)
|
|
|
- scalar or array_like (optional)
- scalar or array_like (optional)
|
- scalar, optional
- scalar, optional
|
- scipy.stats distribution
- scipy.stats distribution
|
- scipy.stats.distribution
- scipy.stats.distribution
|
- see Parameters
- see Parameters
|
- see
endog in Parameters
- see
endog in Parameters
|
- see delta_x in Parameters
- see delta_x in Parameters
|
- see delta_y_1_T in Parameters
- see delta_y_1_T in Parameters
|
- see y_lag1 in Parameters
- see y_lag1 in Parameters
|
|
|
- sequence of data or cells
- sequence of data or cells
|
- sequence of ndarrays
- sequence of ndarrays
|
|
- sequence of scalar or str, optional
- sequence of scalar or str, optional
|
|
- sparse.coo_matrix
- sparse.coo_matrix
|
- square array
- square array
|
|
|
- square symmetric ndarray
- square symmetric ndarray
|
- statespace.kalman_filter.KalmanFilter
- statespace.kalman_filter.KalmanFilter
|
- statsmodels Principal Component Analysis instance
- statsmodels Principal Component Analysis instance
|
- statsmodels model
- statsmodels model
|
- statsmodels model class instance
- statsmodels model class instance
|
- statsmodels results instance or list of result instances
- statsmodels results instance or list of result instances
|
|
|
- str ('data' or 'header')
- str ('data' or 'header')
|
- str or Matplotlib Colormap instance, optional
- str or Matplotlib Colormap instance, optional
|
|
- str or None, optional
- str or None, optional
|
|
|
- str or filehandle
- str or filehandle
|
- str or generic Formula object
- str or generic Formula object
|
- str or int {"I","II","III"} or {1,2,3}
- str or int {"I","II","III"} or {1,2,3}
|
- str or offset
- str or offset
|
- str or patsy.model_desc
- str or patsy.model_desc
|
|
- str {"F", "Chisq", "Cp"} or None
- str {"F", "Chisq", "Cp"} or None
|
- str {"additive", "multiplicative"}
- str {"additive", "multiplicative"}
|
- str {"aq","qm", "other"}
- str {"aq","qm", "other"}
|
- str {"c", "ct", "ctt", "nc"}
- str {"c", "ct", "ctt", "nc"}
|
- str {"c", "nc", "ct", "ctt"}
- str {"c", "nc", "ct", "ctt"}
|
- str {"c","t","ct","ctt"}
- str {"c","t","ct","ctt"}
|
- str {"ls", "ssm"}
- str {"ls", "ssm"}
|
- str {"ml"}, default: "ml"
- str {"ml"}, default: "ml"
|
- str {"nc", "c", "ct", "ctt"}
- str {"nc", "c", "ct", "ctt"}
|
- str {"nc", "co", "ci", "lo", "li"}
- str {"nc", "co", "ci", "lo", "li"}
|
- str {'45', 's', 'r', q'} or None
- str {'45', 's', 'r', q'} or None
|
- str {'45', 's', 'r', q'} or None, optional
- str {'45', 's', 'r', q'} or None, optional
|
- str {'45','r','s','q'}
- str {'45','r','s','q'}
|
- str {'DFFITS', 'Cooks'}
- str {'DFFITS', 'Cooks'}
|
- str {'aic','bic','hic','t-stat'}
- str {'aic','bic','hic','t-stat'}
|
- str {'aic','bic','hqic','t-stat'}
- str {'aic','bic','hqic','t-stat'}
|
- str {'c', 'ct'}
- str {'c', 'ct'}
|
- str {'c', 'tc', 'ctt', 'nc'}
- str {'c', 'tc', 'ctt', 'nc'}
|
- str {'c','nc'}
- str {'c','nc'}
|
- str {'cmle', 'mle'}, optional
- str {'cmle', 'mle'}, optional
|
- str {'css-mle','mle','css'}
- str {'css-mle','mle','css'}
|
- str {'ex','sep','in'}
- str {'ex','sep','in'}
|
- str {'forward', 'backward', 'both', 'none'} or None
- str {'forward', 'backward', 'both', 'none'} or None
|
- str {'line', 'scatter', 'both'}, optional
- str {'line', 'scatter', 'both'}, optional
|
- str {'nc', 'c', 'ct'}
- str {'nc', 'c', 'ct'}
|
- str {'newton','nm','bfgs','powell','cg','ncg','basinhopping',
- str {'newton','nm','bfgs','powell','cg','ncg','basinhopping',
|
- str {'raise', 'add', 'skip'}
- str {'raise', 'add', 'skip'}
|
- str {
"f" , "wald" }
- str {
"f" , "wald" }
|
- str {
"granger" , "inst" }, default: "granger"
- str {
"granger" , "inst" }, default: "granger"
|
- str {
"nc" , "co" , "ci" , "lo" , "li" }
- str {
"nc" , "co" , "ci" , "lo" , "li" }
|
- str, datetime
- str, datetime
|
- str, defaults to 'brentq'
- str, defaults to 'brentq'
|
|
|
- str, optional
- str, optional
|
|
- str, {
"trace" , "maxeig" }, default: "trace"
- str, {
"trace" , "maxeig" }, default: "trace"
|
|
|
- string in ['nobs', 'effect_size', 'alpha']
- string in ['nobs', 'effect_size', 'alpha']
|
- string in ['norm', 'binom']
- string in ['norm', 'binom']
|
- string in ['normal']
- string in ['normal']
|
- string in ['two-sided', 'smaller', 'larger']
- string in ['two-sided', 'smaller', 'larger']
|
|
|
- string or HuberScale()
- string or HuberScale()
|
|
- string or array or callable
- string or array or callable
|
|
- string or callable
- string or callable
|
- string or filehandle
- string or filehandle
|
|
|
|
|
- string {'breakvar'} or None
- string {'breakvar'} or None
|
- string {'jarquebera'} or None
- string {'jarquebera'} or None
|
- string {'ljungbox','boxpierece'} or None
- string {'ljungbox','boxpierece'} or None
|
|
- string, 'increasing', 'decreasing' or 'two-sided'
- string, 'increasing', 'decreasing' or 'two-sided'
|
- string, 'pooled'
- string, 'pooled'
|
- string, 'pooled' or 'unequal'
- string, 'pooled' or 'unequal'
|
- string, 'two-sided' (default) or 'one-sided'
- string, 'two-sided' (default) or 'one-sided'
|
- string, 'two-sided' (default), 'larger', 'smaller'
- string, 'two-sided' (default), 'larger', 'smaller'
|
- string, default is 'bfgs'
- string, default is 'bfgs'
|
- string, defines method for robust
- string, defines method for robust
|
- string, kernel to use in the kernel density estimation for the
- string, kernel to use in the kernel density estimation for the
|
- string, method used to calculate the variance-covariance matrix
- string, method used to calculate the variance-covariance matrix
|
- string, optional
- string, optional
|
|
- structured array
- structured array
|
- str{'c', 'ct'}
- str{'c', 'ct'}
|
- str{'n','c','t','ct'} or iterable
- str{'n','c','t','ct'} or iterable
|
- str{'n','c','t','ct'} or iterable, optional
- str{'n','c','t','ct'} or iterable, optional
|
- table is attached
- table is attached
|
- tables are attached
- tables are attached
|
|
|
- tuple of None or ndarrays
- tuple of None or ndarrays
|
- tuple of dicts, optional
- tuple of dicts, optional
|
|
|
- tuple of lists, optional
- tuple of lists, optional
|
- tuple of two ndarrays
- tuple of two ndarrays
|
- tuple or array_like ([min, k_vars], [max, k_vars])
- tuple or array_like ([min, k_vars], [max, k_vars])
|
|
|
- tuple, (ar, ma)
- tuple, (ar, ma)
|
- tuple, (mu, ar, ma)
- tuple, (mu, ar, ma)
|
- tuple, 2 elements
- tuple, 2 elements
|
- tuple, optional
- tuple, optional
|
|
- type, optional
- type, optional
|
- unknown values of A and B matrix concatenated
- unknown values of A and B matrix concatenated
|
- var, optional
- var, optional
|
- vector length neqs, default to largest for each
- vector length neqs, default to largest for each
|
- vector-valued function
- vector-valued function
|
- {"add", "mul", "additive", "multiplicative", None}, optional
- {"add", "mul", "additive", "multiplicative", None}, optional
|
- {'AIC', 'BIC', 't-stat', None}
- {'AIC', 'BIC', 't-stat', None}
|
- {'MBD', 'BD2'}, optional
- {'MBD', 'BD2'}, optional
|
- {'aic', 'bic', 'hqic'}
- {'aic', 'bic', 'hqic'}
|
- {'aic', 'bic', 't-stat'}
- {'aic', 'bic', 't-stat'}
|
- {'aic', 'fpe', 'hqic', 'bic', None}
- {'aic', 'fpe', 'hqic', 'bic', None}
|
- {'approx', 'table'}, optional
- {'approx', 'table'}, optional
|
- {'approximate_diffuse','stationary','known'}, optional
- {'approximate_diffuse','stationary','known'}, optional
|
- {'bky', 'bh')
- {'bky', 'bh')
|
- {'bootstrap', 'montecarlo'}
- {'bootstrap', 'montecarlo'}
|
- {'both', 'left', 'right'}, optional
- {'both', 'left', 'right'}, optional
|
- {'c', 'nc', 'ct', 'ctt'}
- {'c', 'nc', 'ct', 'ctt'}
|
- {'c','ct','ctt','nc'}
- {'c','ct','ctt','nc'}
|
- {'cov', ...}
- {'cov', ...}
|
- {'diagonal', 'unstructured'}
- {'diagonal', 'unstructured'}
|
- {'diagonal', 'unstructured'}, optional
- {'diagonal', 'unstructured'}, optional
|
- {'eim', 'oim'}, optional
- {'eim', 'oim'}, optional
|
- {'expanding', 'rolling'}
- {'expanding', 'rolling'}
|
- {'f', 'wald'}
- {'f', 'wald'}
|
- {'filtered', 'smoothed'}, or None, optional
- {'filtered', 'smoothed'}, or None, optional
|
- {'full', 'drop-last', 'drop-first'}
- {'full', 'drop-last', 'drop-first'}
|
- {'goodman', 'sison-glaz'}, optional
- {'goodman', 'sison-glaz'}, optional
|
- {'guerrero', 'loglik'}
- {'guerrero', 'loglik'}
|
- {'harvey', 'approx'} or None, optional
- {'harvey', 'approx'} or None, optional
|
- {'indep', 'negcorr')
- {'indep', 'negcorr')
|
- {'left', 'right'}, optional
- {'left', 'right'}, optional
|
- {'mean', 'median'} or number
- {'mean', 'median'} or number
|
|
|
- {'nc', 'c', 't', 'ct'}
- {'nc', 'c', 't', 'ct'}
|
- {'nc', 'c'}, optional
- {'nc', 'c'}, optional
|
- {'nm', 'newton', 'bfgs', 'cg', 'ncg', 'powell'}
- {'nm', 'newton', 'bfgs', 'cg', 'ncg', 'powell'}
|
- {'norm', 'exp'}, optional
- {'norm', 'exp'}, optional
|
|
- {'opg','oim','approx'}, optional
- {'opg','oim','approx'}, optional
|
- {'s', 'd', 'c', 'z'}, optional
- {'s', 'd', 'c', 'z'}, optional
|
- {'s','d','c','z'}, optional
- {'s','d','c','z'}, optional
|
- {'scalar', 'diagonal', 'unstructured'}, optional
- {'scalar', 'diagonal', 'unstructured'}, optional
|
- {'sd', 'mad'}
- {'sd', 'mad'}
|
- {'standard', 'lutkepohl'}
- {'standard', 'lutkepohl'}
|
- {'ywunbiased', 'ywmle', 'ols'}
- {'ywunbiased', 'ywmle', 'ols'}
|
- {0,1}, optional
- {0,1}, optional
|
- {0.05, 0.01}
- {0.05, 0.01}
|
- {0.4, float} optional
- {0.4, float} optional
|
- {0.95, 0.99}
- {0.95, 0.99}
|
- {False, True}
- {False, True}
|
- {None, "hc0", "hc1", "hc2", "hc3"}
- {None, "hc0", "hc1", "hc2", "hc3"}
|
- {None, int}, optional
- {None, int}, optional
|
- {True, False, 'log', float}, optional
- {True, False, 'log', float}, optional
|
- {{prefix}}SimulationSmoother object
- {{prefix}}SimulationSmoother object
|